1.
Anderson, J.D.
A History of Aerodynamics, 1997, Cambridge University Press.
2.
Reynolds, O.
On the dynamical theory of incompressible viscous fluids and the determination of the critertion, 1894, Phil Trans Roy Soc, 1895, 186, pp 123–164.
3.
Mellen, P., Froehlich, J. and Rodi, W.
Lessons from the European LESFOIL project on LES of flow around an airfoil, 2002, AIAA 2002-0111.
4.
Jones, W.P. and Manners, A.
The calculation of the flow through a two-dimensional faired diffuser, Turbulent Shear Flows 6, Andre, J.C. ET AL,(Eds), 1989,pp 18–31, Springer.
5.
Lai, Y.G.
Computational method of second-moment turbulence closures in complex geometries, J AIAA, 1995,33, pp 1426–1432.
6.
Durbin, P.
Separated flow computations with the k-ε-v^{2}
model, J AIAA, 1995,33, pp 659–664.
7.
Parneix, S., Durbin, PA. and Behnia, M.
Computation of 3-D turbulent boundary layers using the V2F model, Flow, Turbulence and Combustion, 1998,60, pp 19–46.
8.
Kassinos, S.C., Langer, C.A., Haire, S.L. and Reynolds, W.C.
Structure-based modelling for wall-bounded flows, Int J Heat and Fluid Flow, 2000,21, pp 599–605.
9.
Cambon, C. and Scott, J.F.
Linear and nonlinear models of anisotropic turbulence, Ann Rev Fluid Mech, 1999,31, pp 1–53.
10.
Schiestel, R., Multiple time scale modelling of turbulent flows in one point closures, Phys Fluids, 1987,30, pp 722.
11.
Wilcox, D.C.
Multi-scale model for turbulent flows, AIAA J, 1988, 26, pp 1311–1320.
12.
Prandtl, L.
Bericht ueber die Enstehung der Turbulenz, Z Angew Math Mech, 1925, 5, pp 136–139.
13.
Von Karman, T. Mechanische Aenlichkeit und Turbulenz, 1930, Proc of Third Int Congress App Mech, Stockholm, pp 85-105.
14.
Cebeci, T. and Smith, A.M.O.
Analysis of turbulent boundary layers, Ser in Appl Math & Mech XV, 1974, Academic Press, London.
15.
Baldwin, B.S. and Lomax, H. Thin-layer approximation algebraic model for separated turbulent flows, 1978, AIAA Paper 78-0257.
16.
Granville, P.S.
Baldwin-Lomax factors for turbulent boundary layers in pressure gradients, J AIAA, 1987,25, pp 1624–1627.
17.
Goldberg, U.C.
Separated flow treatment with a new turbulence model, J AIAA, 1986,24, pp 1711–1713.
18.
Wolfshtein, M.
The velocity and temperature distribution in one- dimensional flow with turbulence augmentation and pressure gradient, Int J Heat Mass Transfer, 1969,12, p 139.
19.
Norris, L.H. and Reynolds, W.C. Turbulence channel flow with a moving wavy boundary, 1975, Rep FM-10, Dept of Mech Eng, Stanford University.
20.
Hassid, S. and Poreh, M.
A turbulence energy model for flows with drag reduction, ASME J of Fluids Eng, 1975,97, pp 234–241.
21.
Mitcheltree, R.A., Salas, M.D. and Hassan, HA.
One equation turbulence model for transonic airfoil flows, J AIAA, 1990,28, pp 1625–1632.
22.
Cook, P.H., Mcdonald, MA. and Firmin, M.C.P. Aerofoil 2822 — Pressure distributions, boundary layer and Wake measurements, 1979, AGARD AR-138.
23.
Baldwin, B.W. and Barth, T.A. One-equation turbulence transport model for high Reynolds number wall-bounded flows, 1991, AIAA Paper 91-0610.
24.
Spalart, P.R. and Allmaras|S.R. A one-equation turbulence model for aerodynamic flows, 1992, AIAA Paper 92-0439.
25.
Menter, F.R.
Eddy viscosity transport equations and their relation to the k-ε model, ASME J Fluids Eng, 1997, 119, pp 876–884.
26.
Goldberg, U.C.
Hypersonic flow heat transfer prediction using single equation turbulence models, ASME J Heat Transfer, 2001, 123, pp 65–69.
27.
Goldberg, U.C. and Ramakrishnan, S.V.,
A pointwise version of the Baldwin-Barth turbulene model, Int J Comp Fluid Dynamics, 1994, 1, pp 321–338.
28.
Bradshaw, P., Ferris, D.H. and Atwell, N.P.
Calculation of boundary layer development using the turbulent energy equation, J Fluid Mech, 1967, 23, pp 31–64.
29.
Menter, F. R.
Two equation eddy viscosity turbulence models for engineering applications, J AIAA, 1994,32, pp 1598–1605.
30.
Jones, W.P. and Launder, B.E.
The prediction of laminarisation with a two-equation model of turbulence, Int J Heat and Mass Transfer, 1972, 15, pp 301–314.
31.
Johnson, D.A. and King, L.S. A mathematical simple turbulence closure model for attached and separated turbulent boundary layers, 1985, AIAA Paper 84-0175.
32.
Coles, D. and Wadcock, AJ.
Flying hot-wire study of flow past a NACA 4412 airfoil at maximum lift, J AIAA, 1979,17, pp 321–328.
33.
Piccin, O. and Cassoudesalle, D. Etude dans la soufflerie Fl des profils AS239 et AS240, 1987, ONERA Technical Report, PV 73/1685 AYG.
34.
Johnson, D.A. and Coakley, TJ.
Improvements to a non-equilibrium algebraic turbulence model, J AIAA, 1990,28, pp 2000–2003.
35.
Abid, R, Vatsa, V.N., Johnson, D.A. and Wedan, B.W. Prediction of separated transonic wing flows with a non-equilibrium algebraic model, 1989, Paper AIAA 89-0558.
36.
Davidov, B.I.
On the statistical dynamics of an incompressible turbulent fluid,DoklAkadNaukSSSR, 1961,136, pp 47–50.
37.
Rodi, W. and Mansour, N.N.
Low Reynolds number k-ε modelling with the aid of direct numerical simulation data, J Fluid Mech, 1993, 250, pp 509–529.
38.
Richardson, L.F.
Weather Prediction by Numerical Process, 1992, University Press, Cambridge.
39.
Harlow, F.H. and Nakayama, P.I. Transport of turbulence energy decay rate, 1968, University of California Report LA-3854, Los Alamos Science Laboratory.
40.
Hanjalic, K. Two-Dimensional Asymmetric Flows in Ducts, 1970, PhD Thesis, University of London.
41.
Launder, B.E. and Sharma, B.I.
Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc, Letters in Heat and Mass Transfer, 1974, l,p 131.
42.
Hoffman, G.H.
Improved form of low Reynolds-number k-ε turbulence model, Physics of Fluids, 1975,18, pp 309–312.
43.
Lam, C.K.G. and Bremhorst, K.
A modified form of the k-ε model for predicting wall turbulence, J Fluids Eng, 1981, 103, pp 456–460.
44.
Chien, K.Y.
1982, Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model, J AIAA, 1982, 20, (1) pp 33–38.
45.
Nagano, Y. and Hishida, M.
Improved form of the k-ε model for turbulent shear flows, 1987, Trans of ASME, 109, p 156.
46.
Myong, H.K. and Kasagi, N.
A new approach to the improvement of k-ε turbulence model for wall bounded shear flows, JSME Int J, Series II, 1990,33, pp 63–72.
47.
So, R.M.C., Zhang, H.S. and Speziale, C.G.
Near-wall modelling of the dissipation rate equation, J AIAA, 1991, 29, pp 2069–2076.
48.
Coakley, T.J and Huang, P.G. Turbulence modelling for high speed flows, 1992, Paper AIAA 92-0436.
49.
Orszag, S.A., Yakhot, V., Flannery, W.S., Boysan, F., Choudhury, D., Maruzewski|J. and Patel, B.
Renormalisation group modelling and turbulence simulations, Near-Wall Turbulent Flows, So, R.M.C., , Speziale, C.G., and Launder, B.E., (Eds), 1993, Elsevier, pp 1031–1046.
50.
Kawamura, H. and Kawashima, N. A proposal for a k-ε model with relevance to the near-wall turbulence, Paper IP .l, Proc Int Symp on Turbulence, Heat and Mass Transfer, 1994, Lisbon.
51.
Lien, F.S. and Leschziner, M.A.
1994, Modelling the flow in a transition duct with a non-orthogonal FV procedure and low-Re turbulence- transport models, 1994, Proc ASME FED Summer Meeting, Symposium on Advances in Computational Methods in Fluid Dynamics, pp 93-106.
52.
Moser, R., Kim, J. and Mansour, N.N.
Direct numerical simulation of turbulent channel flow up to Re_{τ} = 590, Physics of Fluids, 1999, 11, pp 943–945.
53.
Patel, C.V., Rodi, W. and Scheuerer, G.
Turbulence models for near- wall and low Reynolds number flows: A review, J AIAA, 1985, 23, pp 1308–1319.
54.
Michelassi, V. and Shih, T-H. LOW Reynolds number two equation modelling of turbulent flows, 1991, Report NASA TM-104368, ICOMP-91-06.
55.
Mansour, N.N., Kim, J. and Moin, P.
Near-wall k-ε turbulence modeling, J AIAA, 1989,27,pp 1068–1073.
56.
Yap, C.R. Turbulent Heat and Momentum Transfer in Recirculating and Impinging Flows, 1987, PhD thesis, University of Manchester.
57.
Jakirlic, S. and Hanjalic, K. A second-moment closure for non-equilibrium and separating high- and low-Re-number flows, 1995, Proc 10th Symp on Turbulent Shear Flows, Pennsylvania State University, 23.25.
58.
Iacovides, H. and Raisee, M.
Computation of flow and heat transfer in 2D rib roughened passages, 1997, Proc 2nd Int Symp on Turbulence, Heat and Mass Transfer, Hanjalic, K. and Peters, T.W.J. (Eds), Delft University Press, pp 21–30.
59.
Hanjalic, K. and Launder, B.E.
Sensitising the dissipation equation to irrotational strains, ASME J Fluids Eng, 1980, 102, pp 34–40.
60.
Yakhot, V., Orszag, S.A.
Thangham, S., Gatski, T.B. and Speziale, C.G., Development of turbulence models for shear flows by a double expansion technique, Phys Fluids A4, 1992, p 1510.
61.
Kato, M. and Launder, B.E. The modelling of turbulent flow around stationary and vibrating square cylinders, 1993, Proc 9th Symp on Turbulent Shear Flows, Kyoto, 10.4.1-10.4.6.
62.
Liou, W.W., Huang, G and Shih, T-H.
Turbulence model assessment for shock wave/turbulent boundary-layer interaction in transonic and supersonic flow, Computers and Fluids, 2000,29, pp 275–299.
63.
Launder, B.E., Priddin, C.H. and Sharma, B.
The calculation of turbulent boundary layers on curved and spinning surfaces, ASME J Fluids Eng, 1977, 98, p 753.
64.
Rodi, W. Influence of buoyancy and rotation on equations for the turbulent length scale, 1979, Proc 2nd Symp on Turbulent Shear Flows, London, 10.37-10.42.
65.
Rodi, W. and Scheuerer, G.
Calculation of curved shear layers with two-equation turbulence models, Physics of Fluids, 1983, 26, p 1422.
66.
Leschziner, M.A. and Rodi, W.
Calculation of annular and twin parallel jets using various discretisation schemes and turbulence models, ASME J Fluids Eng, 1981, 103, pp 352–360.
67.
Wilcox, D.C. 1988, Reassessment of the scale-determining equation for advanced turbulence models, J AIAA, 1988, 26, pp 1299–1310.
68.
Wilcox, D.C.
Simulation transition with a two-equation turbulence model, J AIAA, 1994, 32, pp 247–255.
69.
Speziale, C.G., Abid, R. and Anderson, E.C.
Critical evaluation of two-equation models for near-wall turbulence, J AIAA, 1992, 30, pp 324–331.
70.
Kalitzin, G., Gould, A.R.B. and Benton, J.J. Application of two-equation turbulence models in aircraft design, 1996, AIAA Paper 96-0327.
71.
Gibson, M.M. and Dafa’Alla, A.A.
Two-equation model for turbulent wall flow, J AIAA, 1995, 33, pp 1514–1518.
72.
Goldberg, U.C.
Towards a pointwise turbulence model for wall- bounded and free shear flows, ASME J Fluids Eng, 1994, 116, p 72.
73.
Benay, R. and Servel, P.
Two-equation k-σ turbulence model: application to supersonic base flow, J AIAA, 2001,39, pp 407–416.
74.
Apsley, D.D. and Leschziner, M.A.
Advanced turbulence modelling of separated flow in a diffuser, Flow, Turbulence and Combustion, 2000, 63, pp 81–112.
75.
Menter, F.R.
Influence of freestream values on k-ω turbulence model predictions, J AIAA, 1992, 30, pp 1657–1659.
76.
Bardina, J.E., Huang, P.G. and Coakley, T.J. Turbulence modelling validation, 1997, Paper AIAA 97-2121.
77.
Batten, P., Craft, T.J, Leschziner, M.A. and Loyau, H.
Reynolds- stress-transport modelling for compressible aerodynamic flows, J AIAA, 1999,37, pp 785–796.
78.
Leschziner, M.A., Batten, P. and Craft, TJ.
Reynolds-stress modelling of afterbody flows, Aeronaut J, 2001, 105, (1048), pp 297–306.
79.
Apsley, D.D. and Leschziner, M.A.
Investigation of advanced turbulence models for the flow in a generic wing-body junction, Flow, Turbulence and Combustion, 2001, 167, pp 25–55.
80.
Zeierman, S. and Wolfshtein, M.
Turbulent time scale for turbulent flow calculations, J AIAA, 1986, 24, pp 1606–1610.
81.
Gilbert, N . and Kleiser, L. Turbulence model testing with the aid of direct numerical simulation results, 1991, Proc 8th Symp on Turbulent Shear Flows, Munich, 26.1.1-26.1.6.
82.
Launder, B.E. and Tselepidakis, DP.
Contribution to the modelling of near-wall turbulence, Turbulent Shear Flows 8, Durst, F. ET AL (Eds), 1993, Springer Verlag, 81.
83.
Hallbaeck, M., Groth, A. and Johansson, A.V.
Anisotropic dissipation rate — implications for Reynolds-stress models, Advances in Turbulence, Johansson, A.V., and Alfredson, P.H., (Eds), Springer, pp 414–421.
84.
Hanjalic, K. and Jakirlic, S.
A model of stress dissipation in second moment closures, Appl Scientific Research, 1993, 51, pp 513–518.
85.
Launder, B.E. and Reynolds, W.C.
Asymptotic near-wall stress dissipation rates in turbulent flow, Phys of Fluids, 1983,26, p 1157
86.
Hanjalic, K.
Advanced turbulence closure models: a view of current status and future prospects, Int J Heat Fluid Flow, 1994, 15, pp 178–203.
87.
Oberlack, M.
Non-isotropic dissipation in non-homogeneous turbulence, J Fluid Mechanics, 1997, 350, pp 351–374.
88.
Rotta, J.C.
Statistische theory nichhomogener turbulenz, Zeitschrift der Physik, 1951, 129, p 547.
89.
Gibson, M.M. and Launder, B.E.
Ground effects on pressure fluctuations in the atmospheric boundary layer, J Fluid Mech, 1978, 86, p 491.
90.
Fu, S., Leschziner, M.A. and Launder, B.E. Modelling strongly swirling recirculating jet flow with Reynolds-stress transport closure, 1987, Proc 6th Symposium on Turbulent Shear Flow, Toulouse, 17.6.1.
91.
Shir, C.C.
A preliminary numerical study of atmospheric turbulent flows in the idealised planetary boundary layer, J Atmos Sci, 1973, 30, p 1327.
92.
Craft, T.J. and Launder, B.E.
New wall-reflection model applied to the turbulent impinging jet, J AIAA, 1992, 30, p 2970.
93.
Launder, B.E. and Shima, N.
Second-moment closure for the near-wall sublayer, J AIAA, 1989,27,pp 1319–1325.
94.
So, R.M.C., Lai, Y.G., Zhang, H.S. and Hwang, B.C.
Second-order near-wall turbulence closures: A review, J AIAA, 1991, 29, pp 1819–1835
95.
Ince, N.Z., Betts, P.L and Launder, B.E. Low Reynolds number modelling of turbulent buoyant flows, 1994, Proc EUROTHERM Seminar 22, Turbulent Natural Convection in Cavities, Delft, Editions europeenes Thermique et Industrie, Paris, Henkes, R.A.W.M. and Hoogendoorn, C.J. (Eds) p 76.
96.
Craft, T.J. and Launder, B.E. 1996, A Reynolds stress closure designed for complex geometries, Int J Heat Fluid Flow, 1996, 17, p 245.
97.
Durbin, P.A.
A Reynolds stress model for near-wall turbulence, J Fluid Mech, 1993, 249, p 465.
98.
Shih, T.H. and Lumley, J.L. Modelling of pressure correlation terms in Reynolds-stress and scalar-flux equations, 1985, Report FDA-85-3, Sibley School of Mech. and Aerospace Eng, Cornell University.
99.
Fu, S., Launder, B.E. and Tselepidakis, D.P. Accommodating the effects of high strain rates in modelling the pressure-strain correlation, 1987, Report TFD/87/5 Mechanical Engineering Dept, UMIST, Manchester.
100.
Speziale, C.G., Sarkar, S. and Gatski, T.B.
Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach, J Fluid Mech, 1991,227, p 245.
101.
Craft, T.J., Graham, L.J.W. and Launder, B.E.
Impinging jet studies for turbulence model assessment — II. An examination of the performance of four turbulence models, Int J Heat Mass Transfer, 1993,36, p 2685.
102.
Craft, T.J.
Developments in a low-Reynolds-number second-moment closure and its application to separating and reattaching flows, Int J Heat and Fluid Flow, 1998, 19, pp 541–548.
103.
Pfunderer, D.G., Eifert, C. and Janicka, J.
Nonlinear second moment closure consistent with shear and strain flows, J AIAA, 1997, 35, pp 825–831.
104.
Jakirlic, S. Reynolds-Spannungs-Modellierung Komplexer Turbulenter Stroemungen, 1997, PhD thesis, University of Erlangen-Nuernberg.
105.
Daly, B.J. and Harlow, F.H.
Transport equations in turbulence, Phys of Fluids, 1970, 13, pp 2634–2649.
106.
Demuren, A.O. and Sarkar, S., Perspective: Systematic study of Reynolds-stress closure models in the computation of plane channel flows, ASME J Fluids Eng, 1993, 115, pp 5–12.
107.
Younis, B.A., Gatski, T.B. and Speziale, C.G.
Towards a rational model for the triple velocity correlations of turbulence, Proc Royal Soc London A, 2000, 456, pp 909–920.
108.
Hanjalic, K. and Launder, B.E.
A Reynolds stress model and its application to thin shear flows, J Fluid Mechanics, 1972, 52, pp 609–638.
109.
Lumley, J.L.
1978, Computational modelling of turbulent flows, Adv Appl Mech, 18, pp 123–176.
110.
Shima, N.
A Reynolds-stress model for near-wall and low-Reynolds- number regions, ASME J of Fluids Engineering, 1988, 110, pp 38–44.
111.
Lien, F.S. and Leschziner, M.A. Modelling 2D and 3D separation from curved surfaces with variants of second-moment closure combined with low-Re near-wall formulations, 1993, Proc 9th Symposium Turbulent Shear Flows, Kyoto, 13.1.1-13.1.6.
112.
Lien, F.S. and Leschziner, M.A.
A pressure-velocity solution strategy for compressible flow and its application to shock/boundary-layer interaction using second-moment turbulence closure, J of Fluids Engineering, 1993, 115, pp 717–725.
113.
Lien, F.S. Computational Modelling of 3D Flow in Complex Ducts and Passages, 1992, PhD thesis, University of Manchester.
114.
Leschziner, M.A. and Ince, N.Z.
Computational modelling of three- dimensional impinging jets with and without cross flow using second- moment closure, Computers and Fluids, 1995, 24, pp 811–832.
115.
Hanjalic, K., Hadzic, I. and Jakirlic, S.
Modelling the turbulent wall flows subjected to strong pressure variations, ASME J of Fluids Engineering, 1999, 121, pp 57–64.
116.
Rodi, W.
A new algebraic relation for calculating the Reynolds stresses, Z Angew Math Mech, 1976, 56, pp 219–221.
117.
Pope, S.B.
A more general effective-viscosity hypothesis, J Fluid Mech, 1975, 72, pp 331–340.
118.
Launder, B.E., Reece, G.J. and Rodi, W.
Progress in the development of Reynolds-stress turbulence closure, J Fluid Mech, 1975, 68, pp 537–566.
119.
Fu, S., Leschziner, M.A. and Launder, B.E. Modelling strongly swirling recirculating jet flow with Reynolds-stress transport closure, 1987, Proc 6th Symposium on Turbulent Shear Flow, Toulouse, 17.6.1- 17.6.6
120.
Girimaji, S.S.
A Galilean invariant explicit algebraic Reynolds stress model for turbulent curved flows, Physics of Fluids, 1997, pp 1067–1077.
121.
Rumsey, C.L., Gatsky, T.L. and Morrison, J.H. Turbulence model predictions of extra strain rate effects in strongly curved flows, 1999, Paper AIAA 99-157.
122.
Wallin, S. and Johansson, A.V. Modelling of streamline curvature effects on turbulence in explicit algebraic Reynolds stress turbulence models, 2001, Proc Second Int Symp on Turbulence and Shear Flow Phenomena, Stockholm, pp 223-228.
123.
Jongen, T. and Gatski, T.B.
General explicit algebraic stress relations and best approximation for three-dimensional flows, 1998, Int J of Engineering Science, 36, pp 739–763.
124.
Wallin, S. and Johansson, A.V.
An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, 2000, J Fluid Mech, 403, pp 89–132.
125.
Xu, X-H. and Speziale, C.G.
Explicit algebraic stress model of turbulence with anisotropic dissipation, J AIAA, 1996, 34, pp 2186–2189.
126.
Johansson, M.C., Knoell, J. and Taulbee, D.B.
Monlinear stress- strain model accounting for dissipation anisotropics, J. AIAA, 2000, 38, pp 2187–2189.
127.
Saffman, P.G.
Results of a two-equation model for turbulent and development of a relaxation stress model for application to straining and rotating flows, Proc Project SQUID Workshop on Turbulence in Internal Flows, Murthy, S. (Ed), 1977, Hemisphere Press, pp 191–231.
128.
Wilcox, D.C. and Rubesin|M.W. Progress in turbulence modelling for complex flow field including effects of compressibility, 1980, NASA TP1517.
129.
Speziale, C.G.
On nonlinear K-l and K-E models of turbulence, J Fluid Mech, 1987, 178, pp 459–475.
130.
Yoshizawa, A.
Statistical analysis of the derivation of the Reynolds stress from its eddy-viscosity representation, Phys of Fluids, 1987, 27, pp 1377–1387.
131.
Shih, T-H., Zhu, J. and Lumley, J.L. A realisable Reynolds stress algebraic equation model, 1993, NASA TM105993.
132.
Rubinstein, R. and Barton, J.M.
Non-linear Reynolds stress models and the renormalisation group, Phys Fluids A, 1990, 2, pp 1472–1476.
133.
Gatski, T.B. and Speziale, C.G.
On explicit algebraic stress models for complex turbulent flows, J Fluid Mech, 1993, 254, pp 59–78.
134.
Craft, T.J., Launder, B.E. and Suoa, K.
Development and application of a cubic eddy-viscosity model of turbulence, Int J Num Meth in Fluids, 1996, 17, pp 108–115.
135.
Lien, F.S. and Durbin, P.A.
1996, Non-linear k-v2 modelling with application to high-lift, Proc Summer Prog, Centre For Turbulence Research, Stanford University, pp 5–22.
136.
Lien, F.S., Chen, W.L. and Leschziner, M.A.
Low-Reynolds-number eddy-viscosity modelling based on non-linear stress-strain/vorticity relations, Engineering Turbulence Modelling and Measurements 3, Rodi, W. and Bergeles, G. (Eds), 1996, Elsevier, pp 91–100.
137.
Taulbee, D.B., Sonnenmeier, J.R. and Wall, K.M.
1993, Application of a new non-linear stress-strain model to axisymmetric turbulent swirling flows, Engineering Turbulence Modelling and Experiments 2, Rodi, W. and Martelli, F.A. (Eds), 1993, Elsevier, pp 103–112.
138.
Wallin, S. and Johansson, A.V.
1997, A new explicit algebraic Reynolds stress turbulence model for 3D flows, Proc 1 1th Symp. on Turbulent Shear Flows, DURST, F.et al, (Eds), 1997, Grenoble, 13.13-13.17.
139.
Rung, T., Fu, S., , and Thiele, , On the realisability of non-linear stress- strain relation for Reynolds-stress closures, Flow, Turbulence and Combustion, 1999,60, pp 333–359.
140.
Apsley, D.D. and Leschziner, M.A.
A new low-Reynolds-number nonlinear two-equation turbulence model for complex flows, Int J Heat and Fluid Flow, 1998,19, pp 209–222.
141.
H. Loyau, H., Batten, P. and Leschziner, M.A.
Modeling shock/boundary-layer interaction with nonlinear eddy-viscosity closures, Flow, Turbulence and Combustion, 1998,60, pp 257–282.
142.
Tavoularis, S. and Corrsin, S.
1981, Experiment in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient, Part I, J Fluid Mech, 1981, 104, pp 311–347.
143.
Huang, P.G.
Bradshaw, P. and Coakley, TJ. Turbulence models for compressible boundary-layers, J AIAA, 1994, 32, pp 735–740.
144.
Marvin, J.G. and Huang, P.G. Tubulence modelling — progress and future outlook, 1996, Proc of 15th Conf on Numerical Methods in Fluid Dynamics, Monterey, California.
145.
Morkovin, M.V.
1962, Effects of compressibility on turbulent flows, Mecanique de la Turbulence, Favre, A. (Ed), Gordon and Breach, NY, pp 367–380.
146.
Huang, P.G., Coleman, G.N. and Bradshaw, P.
Compressible turbulent channel flows — DNS results and modelling, J Fluid Mech, 1995, 305, pp 185–218.
147.
Zeman, O.
Dilatation disspation: the concept and application in modelling compressible mixing layers, Phys Fluids, 1990,2, pp 178–188.
148.
Sarkar, S., Erlebacher, G., Hussaini, MY. and Kreiss, H.O.
The analysis and modelling of dilatational terms in compressible turbulence, J Fluid Mech, 1991, 227, pp 473–493.
149.
Wilcox, D.C.
Turbulence Modelling for CFD, 1993, DCW Industries, La Canada, California.
150.
Fauchet, G., Sho, L., Wunenberger, R. and Bertoglio, J.P.
An improved two-point closure for weakly compressible turbulence and comparison with large-eddy simulations, Appl Sci Research, 1997, 57, pp 165–194.
151.
Aupoix, B., Blaisdell, G.A., Reynolds, W.C. and Zeman, O.
Modelling the turbulent kinetic energy equation for compressible homoge-neous turbulence, J AIAA, 1986, 24, pp 437–443.
152.
Sarkar, S.
The pressure-dilatation correlation in compressible flows, Phys Fluid, 1992, 282, pp 163–186.
153.
Zeman, O. New model for super/hypersonic turbulent boundary layers, 1993, Paper AIAA 93-0897.
154.
El Baz, A.M. and Launder, B.E.
Second-moment modelling of compressible mixing layers, Engineering Turbulence Modelling and Experiments
3,1993, Elsevier, pp 63–70.
155.
Coakley, T.J., Horstman, C.C., Marvin, J.G., Viegas, J.R, Bardina, J.E., Huang, P.G. and Kussoy, M.I. Turbulence compressibility corrections, 1994, NASA TM-108827.
156.
Huang, P.G. Modelling hypersonic boundary layers with second moment closure, 1990, CTR, University of Stanford, Annual Research Briefs, pp 1-13.
157.
Friedrich, R. and Bertolotti, F.
Ompressibility effects due to turbulent fluctuations, Appl Sci Research, 1997, 57, pp 165–194.
158.
Coleman, G.N., Kim, J. and Moser, R.D.
A numerical study of turbulent supersonic isothermal wall channel flow, J Fluid Mech, 1995, 30, pp 159–183.
159.
Sarkar, S.
The stabilising effect of compressibility in turbulent shear flow, J Fluid Mech, 1995, 282, pp 163–186.
160.
Harlow, F.H. and Welch, J.E.
Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface, Phys Fluids, 1965,8,pp 2182–2189.
161.
Patankar, S.V. and Spalding, D.B.
Heat and Mass Transfer in Boundary Layers, 1970, Second Edition, Intertext, London.
162.
Chorin, J. Numerical solution of the Navier-Stokes equations, Mathematics of Computation, 1968, 22, pp 745–762.
163.
Chorin, J. A numerical method for solving incompressible flow problems, J Comput Phys, 1967,2, pp 12–26.
164.
Chorin, A.J. and Marsden, G. A
Mathematical Introduction to Fluid Mechanics, 1993, Springer-Verlag.
165.
Rogers, S.E., Kwak, D. and Kiris, C.
Steady and unsteady solutions of the incompressible Navier-Stokes equations, J AIAA, 1991. 29, pp 603–610.
166.
Merkle, C.L. and Athavale|M. Time-accurate unsteady incompressible flow algorithms based on artificial compressibility, 1987, AIAA Paper 87-1137.
167.
Drikakis, D.
Uniformly high-order methods for unsteady incompressible flows, In Godunov Methods: Theory and Applications, Toro, E.F. (Ed), 2001, Kluwer Academic Publishers, pp 263–283.
168.
Barakos, G. and Drikakis, D.
Implicit-coupled implementation of two-equation turbulence models in compressible Navier-Stokes methods, Int J Num Meth Fluids, 1998, 28, pp 73–94.
169.
Drikakis, D. and Goldberg, U.
Wall-distance-free turbulence models applied to incompressible flows, Int J of Comput Fluid Dyn, 1998, 10, pp 241–253.
170.
Kunz, R.F. and Lakshminarayama, B.
Explicit Navier-Stokes computation of cascade flows using the turbulence model, J AIAA, 1992, 30, pp 13–22.
171.
Liou, W.W. and Shih, T.H. Transonic turbulent flow predictions with two-equation turbulence models, NASA, Lewis, CR, ICOMP (1996).
172.
Sahu, J. and Danberg, J.
Navier-Stokes computations of transonic flows with a two equation turbulence model, J AIAA, 1986, 24, pp 1744–1751.
173.
Gerolymos, G.A. and Vallet, I.
Implicit computation of three-dimensional compressible Navier-Stokes equations using k-ε closure, J AIAA, 1996,34, pp 1321–1330.
174.
LIN,
etal.
175.
Chakravarthy, S.R. High resolution upwind formulations for the Navier-Stokes equations, 1988, VKI Lecture Series, Comp Fluid Dyns, 1988-05.
176.
Eberle, A. 3D Euler calculations using characteristic flux extrapolation, 1985, Paper AIAA-85-0119.
177.
Zoltak, J. and Drikakis, D.
Hybrid upwind methods for the simulation of unsteady shock-wave diffraction over a cylinder, Computer Methods in Appl Mech & Eng, 1998, 162, pp 165–185.
178.
Schmatz, M.A., Brenneis, A. and Eberle, A. Verification of an implicit relaxation method for steady and unsteady viscous flow problems, 1988, AGARD CP 437,15.1-15.33.
179.
Drikakis, D and Durst, F.
Investigation of flux formulae in transonic shock wave/Turbulent boundary layer interaction, Int J Num Meth Fluids, 1994, 18, pp 385–413.
180.
Chen, J.P. and Whitfield, D.L. Navier-Stokes calculations for the unsteady flowfield of turbomachinery, 1993, Paper AIAA-93-0676.
181.
Eberle, A., Rizzi, A. and Hirschel, E.H.
Numerical solutions of the Euler equations for steady flow problems, Notes on Numerical Fluid Mechanics, 1992,34, Vieweg Verlag.
182.
Drikakis, D.
Schreck, E., and Durst, F.
Performance analysis of viscous flow computations on various parallel architectures, ASME J of Fluids Eng, 1994, 116, pp 835–841.
183.
Drikakis, D. and Durst, F.
Parallelisation of inviscid and viscous flow solvers, Int J of Comp Fluid Dyn, 1994,3, pp 101–121.
184.
Barakos, G. and Drikakis, D.
An implicit unfactored method for unsteady, turbulent compressible flows with moving boundaries, Computers & Fluids, 1999, 28, pp 899–921.
185.
Morrison, J.H. A compressible Navier-Stokes solver with two-equation and Reynolds stress closure models, 1992, NASA CR 4440.
186.
Vallet, I. Aerodynamique Numerique 3D Instationnaire avec Fermature bas-Renolds au Second Ordre, 1995, Doctoral Thesis, Universite Paris 6.
187.
Batten, P., Leschziner, M.A. and Goldberg, U.G.
Average state Jacobians and implicit methods for compressible viscous and turbulent flows, J Comput Phys, 1997, 137, pp 38–78.
188.
Liu, F.
Multigrid Solution of the Navier-Stokes Equations with a two- equation turbulence model, Frontiers of Computational Fluid Dynamics, Caughey, D.A. and Hafez, M.M. (Eds), 1994, John Wiley and Sons, pp 339–359.
189.
Liu, F. and Zheng, X. A staggered finite volume scheme for solving cascade flow with a two-dimensional model of turbulence, 1993, Paper AIAA 93-1912.
190.
Merci, B., Steelant, J., Vierendeels, J., Riemslagh, K. and Dick, E.
Computation treatment of source terms in two-equation turbulence models, J AIAA, 2000,38, pp 2085–2093.
191.
Bachalo, W.D. and Johnson, D.A.
1986, Transonic turbulent boundary layer separation generated on an axisymmetric flow model, J AIAA, 24, pp 437–443.
192.
Johnson, D.A., Horstman, C.C. and Bachalo, W.D.
Comparison between experiment and prediction for a transonic turbulent separated
flow, J AIAA, 1982, 20, pp 737–744.
193.
Kline, S.J., Cantwell, B.J. and Lilley, G.M. Proc 1980-81 AFSOR- HTTM-Stanford Conference on Complex Turbulent Flows, 1981, Stanford University, Stanford, California.
194.
Barakos, G., and Drikakis, D.
Investigation of non-linear eddy- viscosity models in shock/boundary-layer interaction, AIAA J, 2000,38, pp 461–469.
195.
Delery, J.M.
Experimental investigation of turbulence properties in transonic shock/boundary-layer interactions, J AIAA, 1983, 21, pp 180– 185.
196.
Karki, K.C. and Patankar, S.V.
A pressure-based calculation procedure for viscous flows at all speeds in arbitrary configurations, J AIAA, 1989,27, pp 1167–1174.
197.
Mcguirk, J.J and Page, G.J. Shock-capturing using a pressure-correction method, 1989, AIAA Paper, 27th Aerospace Sciences Meeting, Reno.
198.
Kobayashi, M.H. and Peirera, J.C.F. Prediction of compressible viscous flows at all Mach numbers using pressure correction, collocated primitive variables and non-orthogonal meshes, 1992, Paper AIAA-92- 0548.
199.
Lien, F-S. and Leschziner, M.A.
A general non-orthogonal finite volume algorithm for turbulent flow at all speeds incorporating second-moment closure. Part I: Numerical implementation, Comput Meth Appl Mech Eng, 1994, 114, pp 123–148.
200.
Shyy, W., Chen, M-H and Sun, C-S. A pressure-based FMG/FAS algorithm for flow at all speeds, 1992, Paper AIAA-92-0426.
201.
Klein, R.
Semi-implicit extension of a Godunov-type scheme based on low Mach number asymptotics, J Comput. Phys, 1995, 121, pp 213–237.
202.
Sesterhenn, J., Mueller, B. and Thomann, H.
On the cancellation problem in calculating compressible low Mach number flows, J Comput Phys, 1999, 151, pp 597–615.
203.
Drikakis, D. and Bagabir, A. On Godunov-type methods for low Mach number flows, 2000, CD-ROM Proceedings of the ECCOMAS 2000 Conference, Barcelona.
204.
Leschziner, M.A. and Lien, F-S.
Numerical aspects of applying second-moment closure to complex flows, Closure Strategies for Turbulent and Transitional Flows, 2001, Launder, B.E. and Sandham, N.D. (Eds), Cambridge University Press.
205.
Huang, P.G. and Leschziner, M.A. Stabilisation of recirculating flow computations performed with second-moment closure and third-order discretisation, 1985, Proc 5th Symp on Turbulent Shear Flow, Cornell University, 20.7-20.12.
206.
Lien, F.S. and Leschziner, M.A.
Modelling 2D separation from highlift aerofoils with a non-linear eddy-viscosity model and second-moment closure, Aeronaut J, 1995,99, pp 125–144.
207.
Lien, F.S. and Leschziner, M.A. 1997, Computational modelling of separated flow around streamlined body at high incidence, Aeronaut J, 1997, 101, pp 269–275.
208.
Hasan, R.G.M. and Mcguirk, J.J.
Assessment of turbulence model performance for transonic flow over an axisymmetric bump, Aeronaut J,2001,105, pp 17–31.
209.
Hasan, R.G.M., Apsley, D.D., Mcguirk, J.J. and Leschziner, M.A. A turbulence model study of separated 3D jet/afterbody flow, submitted to Aeronaut J, 2002.
210.
Haase, W., Brandsma, F., Elsholz, E., Leschziner, M.A. and Schwamborn, D. (Eds). Euroval — A European Initiative on Validation of CFD Codes — Results of the EC/BRITE-EURAM Project EUROVAL, 1990-1992, Notes on Numerical Fluid Mechanics, 1993, 42, Vieweg Verlag.
211.
Haase, W., Chaput, E., Elsholz, E., Leschziner, M.A. and Muller, U.R. (Eds) ECARP: European Computational Aerodynamics Research Project. II: Validation of CFD Codes and Assessment of Turbulent Models, Notes on Numerical Fluid Mechanics, 1996, 58, Vieweg Verlag.
212.
Dervieux, A., Braza, F. and Dussauge, J-P. (Eds), Computation and Comparison of Efficient Turbulence Models for Aeronautics - European Research Project ETMA, Notes on Numerical Fluid Mechanics, 1998,65, Vieweg Verlag.
213.
Delery, J. Investigation of strong turbulent boundary-layer interaction in 2D flows with emphasis on turbulence phenomena, 1981, Paper AIAA 81-1245.
214.
Horseman, C.C. Prediction of hypersonic shock wave/turbulent boundary layer interaction flows, 1987, Paper AIAA 87-1367.
215.
Dolling, D.S.
High-speed turbulent separated flows: consistency of mathematical models and flow physics, J AIAA, 1998, 36, pp 725–732.
216.
Menter, F.R., Performance of popular turbulence models for attached and separated adverse pressure gradient flows, J AIAA, 1992, 30, pp 2066–2072.
217.
Robinson, D. P. and Hasan, H.A.
Further developments of the k-ζ
, (enstrophy) turbulence closure model, J AIAA, 1998, 36, pp 1825–1833.
218.
Jang, Y-J., Temmerman, L. and Leschziner, M.A. Investigation of anisotropy-resolving turbulence models by reference to highly-resolved LES data for separated flow, 2001, CD-ROM proc ECCOMAS 2001 conf, Swansea.
219.
Huang, P.G. Validation of turbulence model - uncertainties and measures to reduce them, 1997, Proc ASME FED Summer Meeting, June 22-26,1997.
220.
Driver, D.M. Reynolds shear stress measurements in a separated boundary layer, 1991, Paper AIAA 91-1787.
221.
Rung, T., Luebke, H., Franke, M., Xue, L., Thile, F. and Fu, S.
Assessment of explicit algebraic stress models in transonic flows, Engineering Turbulence Modelling and Experiments 4, 1999, Rodi, W., and Laurence, D., (Eds), Elsevier, 659–668.
222.
Schmitt, V. and Charpin, F. Pressure distributions on the ONERA M6 wing at transonic Mach numbers, AGARD AR-138 (179).
223.
Obi, S.
Aoki, K. and Masuda, S. (1993), Experimental and computational study of turbulent separated flow in an asymmetric diffuser, Proc 9th Symp on Turbulent Shear Flows, Kyoto, pp 305-307.
224.
Barakos, G. and Drikakis, D. Assessment of various low-Re turbulence models in shock boundary layer interaction, Computer Methods in Applied Mechanics and Engineering, 1998, 160, pp 155–174.
225.
Barakos, G., Drikakis, D. and Lefebre, W.
Improvement to numerical predictions of aerodynamic flows using experimental data assimilation, Journal of Aircraft, 1999,36, (3), pp 611–614.
226.
Abid, R., Rumsey, C and Gatski, T.B.
Prediction of non-equilibrium turbulent flows with explicit algebraic stress models, J AIAA, 1995, 33, pp 2026–2031.
227.
Abid, R., Morrison, J.H., Gatski, T.B. and Speziale, C.G.,
Prediction of aerodynamic flows with a new explicit algebraic stress model, J AIAA, 1996,34, pp 2632–2635.
228.
Haidinger, F.A. and Friedrich, R.
Computation of shock wave/ boundary layer interactions using a two-equation model with compressibility corrections, Appl Scientific Research, 1993,51, pp 501–505.
229.
Haidinger, F.A. and Friedrich, R.
Numerical simulation of strong shock/turbulent boundary layer interaction using a Reynolds stress model, Zeitschrift der Flugwissenschaften und Weltraumforschung, 1995,19, pp 10–18.
230.
Coratekin, T.
Schubert, A. and Ballmann, J.
Assessment of eddy- viscosity models in 2D and 3D shock/boundary-layer interactions, Engineering Turbulence Modelling and Experiments 4, Rodi, W. and Laurence, D. (Eds), Elsevier, pp 649–658.
231.
Zhou, G., Davidson, L. and Olsson, E.
Turbulent transonic airfoil flow simulation using a pressure-based algorithm, J AIAA, 1995, 33, pp 42–47.
232.
Srinivasan, G.R., Ekaterinaris, J.A. and Mccroskey, W.J. Dynamic stall of an oscillating wing, 1993, Part 1: Evaluation of turbulence models, Paper AIAA 93-3403.
233.
Ekaterinaris, J.A. and Menter, F.R.
Computation of oscillating airfoil flows with one and two-equation turbulence models. J AIAA, 1994, 32, pp 2359–2365.
234.
Leschziner, M.A., Loyau, H. and Apsley, D.D. Prediction of shock/boundary-layer interaction with non-linear eddy-viscosity models, 2000, CD-ROM Proc European Congress on Computational Methods in Applies Sciences and Engineering, ECCOMAS 2000, Barcelona.
235.
Wu, X. and Squires, K.D.
Prediction of the three-dimensional turbulent boundary layer over a swept bump, J AIAA, 1998,36, pp 505–514.
236.
Vandromme, D. and Haminh, H.
Physical analysis for turbulent boundary-layer/shock-wave interactions using second-moment closure predictions, Turbulent Shear-Layer/Shock-Wave Interactions, Delery, J. (Ed), 1985, Springer, pp 127–136.
237.
Benay, R., Coet, M.C. and Delery, J. A study of turbulence modelling in transonic shock-wave/boundary-layer interactions, 1987, Proc of 6th Symp on Turbulent Shear Flows, Toulouse, 8.2.1-8.2.6.
238.
Leschziner, M.A., Dimitriadis, K.P. and Page, G.
Computational modelling of shock wave/boundary layer interaction with a cell-vertex scheme and transport models of turbulence, Aero J, 1993, 97, pp 43–61.
239.
Morrison, J.H., Gatski, T.B., Sommer, T.P. and So, R.M.C.
Evaluation of a near-wall turbulent closure model in predicting compressible ramp flows, Near-Wall Turbulent Flows, So, R.M.C, Speziale, C.G. and Launder, B.E. (Eds), 1993, Elsevier, pp 239–250.
240.
Chenault, C.F. and Beran, P.S.
K-E and Reynolds stress turbulence model comparisons for two-dimensional injection flows, J AIAA, 1998, 36,pp 1401–1412.
241.
Chenault, C.F., Beran, P.S. and Bowersox, R.D.W.
Numerical investigation of supersonic injection using a Reynolds-stress turbulence model, JAIAA, 1999,37, pp 1257–1269.
242.
Gerolymos, G.A. and Vallet, I.
Near-wall Reynolds-stress three- dimensional transonic flow computation, J AIAA, 1997, 35, pp 228–236.
243.
Drikakis, D. and Barakos, G. Numerical developments in unsteady aerodynamic flows, 2000, CD-ROM Proc ECCOMAS Conference, Forum: CFD in Aeronautics, Industrial Technology Session organised by EU, Barcelona, 2000.
244.
Huang, P.G. and Coakley, T.J.
Modelling hypersonic flows with second-moment closure, Near-Wall Turbulent Flows, So, R.M.C, Speziale, C.G. and Launder, B.E. (Eds), 1993, Elsevier, pp 199–208.
245.
Meier, H.U., Kreplin., H.P., Landhauser, A. and Baumgarten, D. Mean velocity distribution in 3D boundary layers developing on a 1:6 prolate spheroid with artificial transition, 1984, DFVLR Report IB 222-84 All.
246.
Davidson, L.
Reynolds stress transport modelling of shock induced separated flow, Computers & Fluids, 1995,24, pp 253–268.
247.
Pot, T., Delery, J. and Quelin, C. Interaction choc-couche limite dans un canal tridimensionnel — nouvelles experiences en vue de la validation du code CANARI, 1991, ONERA TR-92/7078 AY.
248.
Leschziner, M.A., Batten, P. and Loyau, H.
Modelling shock-affected near-wall flows with anisotropy-resolving turbulence closures, Int J Heat and Fluid Flow, 2000,21, pp 239–251.
249.
Barakos, G. and Drikakis, D.
Unsteady separated flows over manouvring lifting surfaces, Phil Trans Royal Soc London. A, 2000, 358, pp 3279–3291.
250.
Putnam, L.E. and Mercer, CE. Pitot-pressure measurements in flow fields behind a rectangular nozzle with exhaust jet for free-stream Mach numbers of 0,0-6 and 1-2. 1986, NASA TM 88990.
251.
Fleming, J.L., Simpson, R.L., Cowling, J.E. and Devenport, W.J.
An experimental study of wing-body junction and wake flow, Experiments in Fluids, 1993,14, pp 366–378.
252.
Rumsey, C.L., Gatsky, T.B., Ying, S.X. and Bertelrud, A.
Prediction of high-lift flows using turbulent closure models, J AIAA, 1998, 36, pp 765–774.
253.
Cousteix, J. and Houdeville|R. Effects of unsteadiness on turbulent boundary layers, 1983, von Karman Inst for Fluid Dynamics, Lecture Series 1983-03.
254.
Power, G.D., Verdon, J.M. and Kousen, K.A.
Analysis of unsteady compressible viscous layers, Tran ASME J Turbomachinery, 1991, 133, pp 644–653.
255.
Mankbadi, R.R. and Mobarak, A.
Quasi-steady turbulence modelling of unsteady flows, Int J Heat and Fluid Flow, 1991,12, pp 122–129.
256.
Justesen, P. and Spalart, P.R. Two-equation turbulence modelling of oscillating boundary layers, 1990, Paper AIAA 90-0496.
257.
Fan, S., Lakshminarayana, B. and Barnett, M.
Low-Reynolds- number k-ε model for unsteady turbulent boundary layers, J AIAA, 1993, 31, pp 1777–1784.
258.
Dafa'Alla, A.A., Juntasaro, E. and Gibson, M.M.
Calculation of oscillating boundary layers with the q-ζ
, turbulence model, Eng Turbulence Modelling and Experiments, 1996,3,pp 141–150.
259.
Shima, N.
Prediction of turbulent boudary layers with a second-moment closure: Part l,Tran ASME J Fluids Eng, 1993, 115, pp 56–63.
260.
HA Minh, H., Viegas, J.R., Rubesin, M.W., Vandromme, D.D. and Spalart, P. Physical analysis and second-order modelling of an unsteady turbulent flow: The oscillating boundary layer on a flat plate, 7th Symp on Turbulent Shear Flows, Stanford, CA, (1989), 11.5.1- 11.5.6.
261.
Hanjalic, K., Jakirlic, S. and Hadzic, I. Computation of oscillating turbulent flows at transitional Reynolds number, 1993, 9th Symp on Turbulent Shear Flows, Kyoto, Japan, 1.4.1 - 1.4.6.
262.
Spalart, P.R. and Baldwin, B.S.
Direct numerical simulation of turbulent oscillating boundary layer, Turbulent Shear Flows, 1989, Springer, pp 417–440.
263.
Kani, A.R. Investigation of Turbulence Models in Oscillating Turbulent Flows, 2000, PhD dissertation, Queen Mary, University of London.
264.
Jensen, B.L., Sumer, B.M. and Fredsoe, J.
Turbulent oscillating boundary layers at high Reynolds numbers, J Fluid Mech, 1989, 206, pp 265–297.
265.
Hino, M., Kashiwayanagi, M.
Nakayama, A. and Hara, T.
Experiments on the turbulence statistics and the structure of a reciprocating oscillatory flow, J Fluid Mech, 1983, 133, pp 363–400.
266.
Barakos, G. and Drikakis, D.
Numerical simulation of transonic buffet flows using various turbulence closures, Int J Heat and Fluid Flow, 2000, 21, pp 620–626.
267.
Telionis, D.P. Unsteady boundary layers, separated and attached, paper 16, AGARD CP-227, Unsteady Aerodynamics, 1977, Ottawa.
268.
Mehta, U.B. and Lavan, Z.
Starting vortex, separation bubbles and stall: A numerical study of laminar unsteady flow around an airfoil, J FluidMechs, 1975,67, pp 227–256.
269.
Gulcat, U. Separate Numerical Treatment of Attached and Detached Flow Regions in General Viscous Flows, 1981, PhD thesis, Georgia Institute of Technology, Atlanta, Georgia.
270.
Mccroskey, W.J., Mcalister, K.W, Carr, L.W., Lambert, O. and Indergrand, R.F.
Dynamic stall of advanced airfoil sections, J American Helicopter Soc, 1991, pp 40–50.
271.
Wu, J.C, Wang, CM. and Tuncer, I.H. Unsteady aerodynamics of rapidly pitched airfoil, 1986, Paper AIAA 86-1105.
272.
Tuncer, I.H., Wu, J.C. and Wang, CM.
Theoretical and numerical studies of oscillating airfoils, J AIAA, 1990,28, pp 1615–1624.
273. AGARD Advisory Report No 702, Compendium of Unsteady Aerodynamic Measurements, 1982.
274.
Mccroskey, W.J., Mcalister, K.W, Carr, L.W. and Pucci, S.L. An experimental study of dynamic stall on advanced airfoil sections, 1982 Vol. 1: Summary of the experiment, NASA-TM-84245-VOL-l.
275.
Carr, L.W.
Progress in analysis and prediction of dynamic stall, J Aircraft, 1988,25, pp 6–17.
276.
Visbal, M.R. Effect of compressibility on dynamic stall, 1988, Paper AIAA Paper 88-0132.
277.
Piziali, R.A. An experimental investigation of 2D and 3D oscillating wing aerodynamics for a range of angle of attack including stall, 1993, NASA-TM-4632.
278.
Guo, W.H., Fu, D.X. and Wa, Y.W.
Numerical investigation of dynamic stall of an oscillating aerofoil, Int J for Num Methods in Fluids, 1994,19, pp 723–734.
279.
Mcdevitt, J.B. and Okuno, A.F. Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility, 1985, NASA-TP-2485, NASA Ames, CA.
280.
Mcdevitt, J.B., Levy, L.L. and Deiwert, G.S.
Transonic flow about a thick circular-arc airfoil, J AIAA, 1976,14, pp 606–613.
281.
Sofialidis, D. and Prinos, P. Development of a non-linear strain-sensitive k-ω turbulence model, 1997, Proc of the 1 1th TSF-11 Conference, Grenoble, France, 2-89 - 2-94.
282.
Rider, W. and Drikakis, D. High resolution methods for computing turbulent flows, Turbulent Flow Computation, Drikakis, D., and Geurts, B., (Eds), 2002, Kluwer Academic Publisher, 2002, to appear.
283.
Oran, E.S. and Boris, J.P.
Numerical Simulation of Reactive Flow, 2001,Elsevier.
284.
Drikakis, D. Numerical issues in very large eddy simulation. CD-ROM, 2001, Proc of the ECCOMAS CFD 2001 Conference, Swansea, UK.
285.
Spalart, P.R., Jou, W-J, Strelets, M. and Allmaras, S.R. Comments on the feasibility of LES for wings and on the hybrid RANS/LES approach, 1997, Advances in DNS/LES, 1st AFOSR Int Conf on NDS/LES, Greden Press.