Skip to main content Accessibility help
×
Home

Contents:

Information:

  • Access

Figures:

Actions:

      • Send article to Kindle

        To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

        Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

        Find out more about the Kindle Personal Document Service.

        Sustainable Composites for Aerospace Applications Edited by M. Jawaid and M. Thariq Woodhead Publishing, Langford Lane, Kidlington, Oxford, OX5 1GB, UK. 2018. xxiv; 364pp. Illustrated £190. ISBN 978-0-08-102131-6.
        Available formats
        ×

        Send article to Dropbox

        To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

        Sustainable Composites for Aerospace Applications Edited by M. Jawaid and M. Thariq Woodhead Publishing, Langford Lane, Kidlington, Oxford, OX5 1GB, UK. 2018. xxiv; 364pp. Illustrated £190. ISBN 978-0-08-102131-6.
        Available formats
        ×

        Send article to Google Drive

        To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

        Sustainable Composites for Aerospace Applications Edited by M. Jawaid and M. Thariq Woodhead Publishing, Langford Lane, Kidlington, Oxford, OX5 1GB, UK. 2018. xxiv; 364pp. Illustrated £190. ISBN 978-0-08-102131-6.
        Available formats
        ×
Export citation

The subject of sustainability in aerospace application of is a major importance to the sector. A step change in structural efficiency leading to sustainable levels of emissions is required if the industry is to meet the challenges required for clean future transport.

This book does little to address these challenges. Whilst it does contain some useful accounts of the performance of composites with natural fibres, it does not provide an examination of the vital areas relating to specific strength, damage tolerance and the influence of advanced materials on weight reduction, reduced maintenance, extended life and end of life recycling.

Civil transport aircraft use carbon fibre reinforced plastic because it outperforms aluminium; particularly when laminates are relatively thin and prone to buckling. This trade-off is of paramount importance to the industry, which generates an increasing proportion of global emissions. I would have expected a book with this title to address and describe these challenges within a scientific framework.

The book is made up of chapters from a wide collection of researchers, covering standard areas such as materials selection, polymers in aerospace, manufacturing techniques, impact damage, repair, machining and inspection/NDT. It also includes chapters on biocomposites, natural-hybrid composites, biomass filler-reinforced polymers and the application of some of these materials to secondary structure. However, it would be useful to evaluate the implications of the use of these materials in the wider system; the impact that the use of these composites would have on the industry as a whole is missing.

Similarly, although there are studies of a variety of composites, the performance indicators associated with them are not backed up with a rigorous methodology. For example, how are the authors determining sustainability? On what merit? Is it embodied greenhouse gasses or energy? This is not clear. Although the use of ‘natural’ materials is often considered inherently sustainable, often when examined rigorously using a life cycle-based assessment, it becomes clear that there are significant impacts. These are not identified through a robust analysis. Furthermore, the standard of presentation is not high.

For all these reasons, I do not recommend that readers, looking for a rigorous treatment of sustainability in aerospace composites, purchase this book.