Skip to main content Accessibility help
×
Home

Sliding mode-based continuous guidance law with terminal angle constraint

  • S. He (a1) and D. Lin (a1)

Abstract

In this paper, sliding mode control and disturbance observer are used to design a new continuous composite guidance law with terminal angle constraint. The robustness and finite-time convergence of the proposed guidance law is established using the Lyapunov stability theory. For performance improvement, a nonlinear disturbance observer, which can be viewed as a ‘patch’ for the original guidance law, is designed to estimate the target manoeuvre. Theoretical analysis and simulation results demonstrate the effectiveness of the proposed method.

Copyright

Corresponding author

References

Hide All
1.Nesline, F.W. and Zarchan, P.A new look at classical vs modern homing missile guidance. J. Guidance, Control, and Dynamics, 1981, 4, (1), pp 7885.
2.Palumbo, N.F., Blauwkamp, R.A. and Lloyd, J.M.Basic principles of homing guidance. Johns Hopkins APL Technical Digest, 2010, 29, (1), pp 2541.
3.Zarchan, P., Tactical and Strategic Missile Guidance. American Institute of Aeronautics and Astronautics Publications, New York, New York, US, 1998.
4.Palumbo, N.F., Blauwkamp, R.A. and Lloyd, J.M.Modern homing missile guidance theory and techniques. Johns Hopkins APL Technical Digest, 2010, 29, (1), pp 4259.
5.Yang, C.D. and Chen, H.Y.Nonlinear H infinity robust guidance law for homing missiles. J. Guidance, Control, and Dynamics, 1998, 21, (6), pp 882890.
6.Zhou, D., Mu, C.D. and Xu, W.L.Adaptive sliding-mode guidance of a homing missile. J. Guidance, Control, and Dynamics, 1999, 22, (4), pp 589594.
7.Phadke, S.B. and Talole, S.E.Sliding mode and inertial delay control based missile guidance. IEEE Transactions on Aerospace and Electronic Systems, 2010, 48, (4), pp 33313346.
8.He, S. and Lin, D.Continuous robust guidance law for intercepting maneuvering targets. Transactions of the Japan Soc. for Aeronautical and Space Sciences, 2015, 58, (3), pp 163169.
9.Zhou, D., Mu, C.D. and Shen, T.L.Robust guidance law with L 2 gain performance. Transactions of the Japan Soc. for Aeronautical and Space Sciences, 2001, 44, (144), pp 8288.
10.Lechevin, N. and Rabbath, C.A.Lyapunov-based nonlinear missile guidance. J. Guidance, Control, and Dynamics, 2004, 27, (6), pp 10961102.
11.Atir, R., Hexner, G. and Weiss, H.Target maneuver adaptive guidance law for a bounded acceleration missile. J. Guidance, Control, and Dynamics, 2010, 33, (3), pp 695706.
12.Chen, R.H., Speyer, J.L. and Lianos, D.Optimal intercept missile guidance strategies with autopilot lag. J. Guidance, Control, and Dynamics, 2010, 33, (4), pp 12641272.
13.Moosapour, S.S., Alizadeh, G., Khanmohammadi, S. and Moosapour, H.A novel robust proportional navigation guidance law design for missile considering autopilot dynamic. Transactions of the Institute of Measurement and Control, 2013, 35, (5), pp 703710.
14.Liang, Y.W., Chen, C.C., Liaw, D.C., Feng, Y.C., Cheng, C.C. and Chen, C.H.Robust guidance law via integral-sliding-mode scheme. J. Guidance, Control, and Dynamics, 2014, 37, (3), pp 10381042.
15.Kim, M. and Grider, K.V.Terminal guidance for impact attitude angle constrained flight trajectories. IEEE Transactions on Aerospace and Electronic Systems, 1973, 6, (AES-9), pp 852859.
16.Ryoo, C.K., Cho, H. and Tahk, M.J.Optimal guidance laws with terminal impact angle constraint. J. Guidance, Control, and Dynamics, 2005, 28, (4), pp 724732.
17.Park, B.G., Kim, T.H. and Tahk, M.J.Optimal impact angle control guidance law considering the seeker's field-of-view limits. Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace Engiuneering, 2013, 227, (8), pp 13471364.
18.Ryoo, C.K., Cho, H. and Tahk, M.J.Time-to-go weighted optimal guidance with impact angle constraints. IEEE Transactions on Control Systems Technology, 2006, 14, (3), pp 483492.
19.Kim, T.H., Lee, C.H. and Tahk, M.J.Time-to-go polynomial guidance with trajectory modulation for observability enhancement. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49, (1), pp 5573.
20.Lee, C.H., Kim, T.H., Tahk, M.J. and Whang, I.H.Polynomial guidance laws considering terminal impact angle and acceleration constraints. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49, (1), pp 7492.
21.Lee, Y.I., Kim, S.H., Lee, J.I. and Tahk, M.J.Analytic solutions of generalized impact angle control guidance law for first order lag system. J. Guidance, Control, and Dynamics, 2012, 36, (1), pp 96112.
22.Manchester, I.R. and Savkin, A.V.Circular navigation guidance law for precision missile/target engagements. J. Guidance, Control, and Dynamics, 2006, 29, (2), pp 314320.
23.Ratnoo, A. and Ghose, D.Impact angle constrained guidance against nonstationary nonmaneuvering targets. J. Guidance, Control, and Dynamics, 2010, 33, (1), pp 269275.
24.Erer, K.S. and Merttopcuoglu, O.Indirect impact-angle-control against stationary targets using biased pure proportional navigation. J. Guidance, Control, and Dynamics, 2012, 35, (2), pp 700704.
25.Lee, C.H., Kim, T.H. and Tahk, M.J.Interception angle control guidance using proportional navigation with error feedback. J. Guidance, Control, and Dynamics, 2013, 36, (5), pp 15561561.
26.Tekin, R. and Erer, K.S.Switched-gain guidance for impact angle control under physical constraints. J. Guidance, Control, and Dynamics, 2014, 38, (2), pp 205216.
27.Kim, T.H., Park, B.G. and Tahk, M.J.Bias-shaping method for biased proportional navigation with terminal-angle constraint. J. Guidance, Control, and Dynamics, 2013, 36, (6), pp 18101816.
28.Zhang, Y.A., Ma, G.X. and Wu, H.L.A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation. Proceedings of the Institution of Mechanical Engineers, Part G: J. Aerospace Engiuneering, 2013, 228, (10), pp 17251734.
29.Harl, N. and Balakrishnan, S.N.Impact time and angle guidance with sliding mode control. IEEE Transactions on Control Systems Technology, 2012, 20, (6), pp 14361449.
30.Kumar, S.R., Rao, S. and Ghose, D.Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints. J. Guidance, Control, and Dynamics, 2012, 35, (4), pp 12301246.
31.Kumar, S.R., Rao, S. and Ghose, D.Nonsingular terminal sliding mode guidance with impact angle constraints. J. Guidance, Control, and Dynamics, 2014, 37, (4), pp 11141130.
32.He, S., Lin, D. and Wang, J.Continuous second-order sliding mode based impact angle guidance law. Aerospace Science and Technology, 2015, 41, pp 199208.
33.He, S., Lin, D. and Wang, J.Robust terminal angle constraint guidance law with autopilot lag for intercepting maneuvering targets. Nonlinear Dynamics, 2015, 81, (1), pp 881892.
34.Zhang, K. and Behal, A.Continuous robust control for aeroelastic vibration control of a 2-D airfoil under unsteady flow. J. Vibration and Control, 2014 DOI: 10.1177/1077546314554821.
35.Zhang, K., Wang, Z., Behal, A. and Marzocca, P.Novel nonlinear control design for a two-dimensional airfoil under unsteady flow. J. Guidance, Control, and Dynamics, 2013, 36, (6), pp 16811694.
36.Zhang, K., Wang, Z., Behal, A. and Marzocca, P.A continuous robust control strategy for the active aeroelastic vibration suppression of supersonic lifting surfaces. Int. J. of Aeronautical and Space Sciences, 2012, 13, (2), pp 210220.
37.Feng, Y., Yu, X. and Man, Z.Non-singular terminal sliding mode control of rigid manipulators. Automatica, 2002, 38, (12), pp 21592167.
38.Bhat, S.P. and Bernstein, D.S.Continuous finite-time stabilization of the translational and rotational double integrators. IEEE Transactions on Automatic Control, 1998, 43, (5), pp 678682.
39.Zhou, D., Sun, S. and Teo, K.L.Guidance laws with finite time convergence. J. Guidance, Control, and Dynamics, 2009, 32, (6), pp 18381846.
40.Tian, Y., Li, Y. and Ren, Z.Vision-based adaptive guidance law for intercepting a maneuvering target. IET Control Theory and Applications, 2011, 5, (3), pp 421428.
41.Lan, Q., Li, S., Yang, J. and Guo, L.Finite-time control for soft landing on an asteroid based on line-of-sight angle. J. Franklin Institute, 2014, 351, (1), pp 383398.
42.Shtessel, Y.B., Shkolnikov, I.A. and Levant, A.Smooth second-order sliding modes: Missile guidance application. Automatica, 2007, 43, (8), pp 14701476.
43.Lee, C.H., Kim, T.H., Tahk, M.J. and Whang, I.H.Polynomial guidance laws considering terminal impact angle and acceleration constraints. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49, (1), pp 7492.

Keywords

Sliding mode-based continuous guidance law with terminal angle constraint

  • S. He (a1) and D. Lin (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed