Skip to main content Accessibility help
×
Home

Semantics-based summarisation of ATM information: Managing information overload in pilot briefings using semantic data containers

  • C. G. Schuetz (a1), B. Neumayr (a2), M. Schrefl (a2), E. Gringinger (a1) and S. Wilson (a3)...
  • Please note a correction has been issued for this article.

Abstract

Pilot briefings, in their traditional form, drown pilots in a sea of information. Rather than unfocused swathes of air traffic management (ATM) information, pilots require only the information for their specific flight, preferably with an emphasis on the most important information. In this paper, we introduce the notion of ATM information cubes – in analogy to the well-established concept of Online analytical processing (OLAP) cubes in data warehousing. We propose a framework with merge and abstraction operations for the combination and summarization of the information in ATM information cubes to obtain management summaries of relevant information. To this end, we adopt the concept of semantic data container – a package of data items with a semantic description of the contents. The semantic descriptions then serve to hierarchically organise semantic containers along the dimensions of an ATM information cube. Leveraging this hierarchical organisation, a merge operation combines ATM information from individual semantic containers and collects the data items into composite containers. An abstraction operation summarises the data items within a semantic container, replacing individual data items with more abstract data items with summary information.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Semantics-based summarisation of ATM information
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Semantics-based summarisation of ATM information
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Semantics-based summarisation of ATM information
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Footnotes

Hide All

The original version of this article was published with an incorrect author’s affiliation. A notice detailing this has been published and the error rectified in the online PDF and HTML copies.

A version of this paper was presented at the 31stICAS Congress of the International Council of the Aeronautical Sciences in Belo Horizonte, Brazil in September 2018.

Footnotes

References

Hide All
1.International Civil Aviation Organization, Aeronautical Information Services Manual, 6th ed, 2003.
2.Pre-flight information bulletin, URL: http://www.ead.eurocontrol.int/ino_resources/webhelp/help/pib_help.html. Accessed: 1 July 2019.
3.International Civil Aviation Organization, Aeronautical Information Services – Annex 15, 15th ed, 2016.
4.Federal Aviation Administration, Aeronautical information manual: Official guide to basic flight information and ATC procedures – October 12, 2017, 2017, URL: https://www.faa.gov/air_traffic/publications/. Accessed: 1 July 2019.
5.Savulov, A., D120 - Aeronautical Information Management System Description (TS) - Digital Integrated Briefing - Final Version, Technical report, 2016, URL: https://sesarju.eu/sites/default/files/solutions/04_TS_DEL_13.02.02_D120_TS_Final.pdf. Accessed: 1 July 2019.
6.Pelchen-Medwed, R. and Porosnicu, E., Enhanced pilot situational awareness through the digital/graphical pre-flight briefing concept, HindSight, June 2016, 23, pp. 6669, URL: http://www.eurocontrol.int/sites/default/files/publication/Hindsight/hindsight-23.pdf. Accessed: 1 July 2019.
7.Steiner, D., Kovacic, I., Burgstaller, F., Schrefl, M., Friesacher, T. and Gringinger, E., Semantic enrichment of DNOTAMs to reduce information overload in pilot briefings, in Proceedings of the 16th Integrated Communications Navigation and Surveillance (ICNS) Conference, 2016, pp. 6B2–16B2–13, DOI: 10.1109/ICNSURV.2016.7486359.
8.Kovacic, I., Steiner, D., Schuetz, C., Neumayr, B., Burgstaller, F., Schrefl, M. and Wilson, S., Ontology-based data description and discovery in a SWIM environment, in Proceedings of the 17th Integrated Communications, Navigation and Surveillance Conference (ICNS), 2017, pp. 5A4–15A4–13, DOI: 10.1109/ICNSURV.2017.8011928.
9.Hiltunen, D., Chase, S. G., Kendra, A. and Jo, Y. J., Electronic flight bag (EFB) 2015 industry survey, Technical report, John A. Volpe National Transportation Systems Center, 2015, URL: https://rosap.ntl.bts.gov/view/dot/12232. Accessed: 1 July 2019.
10.Schuetz, C. G., Neumayr, B., Schrefl, M., Gringinger, E. and Wilson, S., Semantics-based summarization of ATM data to manage information overload in pilot briefings, in Proceedings of the 31st Congress of the International Council of the Aeronautical Sciences, 2018, URL: http://www.icas.org/ICAS_ARCHIVE/ICAS2018/data/papers/ICAS2018_0763_paper.pdf. Accessed: 1 July 2019.
11.Vaisman, A. and Zimányi, E., Data Warehouse Systems – Design and Implementation, Springer, 2014, Berlin Heidelberg.
12.Neumayr, B., Gringinger, E., Schuetz, C. G., Schrefl, M., Wilson, S. and Vennesland, A., Semantic data containers for realizing the full potential of system wide information management, in Proceedings of the 36th IEEE/AIAA Digital Avionics Systems Conference (DASC), 2017, DOI: 10.1109/DASC.2017.8102002.
13.Studer, R., Benjamins, V. R. and Fensel, D., Knowledge engineering: principles and methods, Data & Knowledge Engineering, 1998, 25 (1–2), pp. 161197.
14.Burgstaller, F., Steiner, D., Neumayr, B., Schrefl, M. and Gringinger, E., Using a model-driven, knowledge-based approach to cope with complexity in filtering of Notices to Airmen, in Proceedings of the Australasian Computer Science Week Multiconference, 2016, DOI: 10.1145/2843043.2843044.
15.Sherman, R., Business Intelligence Guidebook, Morgan Kaufmann, 2015, Boston.
16.Chen, C., Zhu, F., Yan, X., Han, J., Yu, P. and Ramakrishnan, R., InfoNetOLAP: OLAP and mining of information networks, in Link Mining: Models, Algorithms, and Applications, Springer, New York, 2010, pp. 411438.
17.Schütz, C., Neumayr, B. and Schrefl, M., Business model ontologies in OLAP cubes, in Salinesi, C., Norrie, M. C. and Pastor, O. (Eds.), CAiSE 2013, LNCS, vol. 7908, Springer, Berlin Heidelberg, 2013, pp. 514529, DOI: 10.1007/978-3-642-38709-8_33.
18.Martínez-Prieto, M. A., Bregon, A., García-Miranda, I., Álvarez Esteban, P. C., Díaz, F. and Scarlatti, D., Integrating flight-related information into a (big) data lake, in Proceedings of the IEEE/AIAA 36th Digital Avionics Systems Conference (DASC), 2017, DOI: 10.1109/DASC.2017.8102023.
19.Federal Aviation Administration, Federal NOTAM system airport operations scenarios, 2010, URL: https://notams.aim.faa.gov/FNSAirportOpsScenarios.pdf. Accessed: 1 July 2019.
20.Harinarayan, V., Rajaraman, A. and Ullman, J. D., Implementing data cubes efficiently, in Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, 1996, pp. 205216, DOI: 10.1145/233269.233333.
21.Lenz, H. J. and Shoshani, A., Summarizability in OLAP and statistical data bases, in Proceedings of the 9th International Conference on Scientific and Statistical Database Management, 1997, pp. 132143, DOI: 10.1109/SSDM.1997.621175.
22.Keller, R. M., The NASA Air Traffic Management Ontology (atmonto) – release dated March 2018, Technical report, National Aeronautics and Space Administration, 2018, URL: https://data.nasa.gov/ontologies/atmonto/. Accessed: 1 July 2019.
23.Angele, J., OntoBroker – mature and approved semantic middleware, Semantic Web, 2014, 5 (3), pp. 221235, DOI: 10.3233/SW-2012-0067.
24.Kifer, M. and Lausen, G., F-logic: A higher-order language for reasoning about objects, inheritance, and scheme, in Proceedings of the 1989 ACM SIGMOD International Conference on Management of Data, 1989, pp. 134146, DOI: 10.1145/67544.66939.
25.Gringinger, E., Fabianek, C. and Schuetz, C. G., BEST D3.2 – Prototype SWIM-enabled Applications, Technical report, BEST Consortium, 2018, URL: http://project-best.eu/downloads/. Accessed: 1 July 2019.
26.Schnepf, M., An OLAP API for cubes with ontology-valued measures, Master’s thesis, Johannes Kepler University Linz, 2015.
27.Lake, R., Burggraf, D. S., Trninić, M. and Rae, L., Geography Mark-Up Language: Foundation for the Geo-Web, John Wiley & Sons, 2004.
28.Vennesland, A., Neumayr, B., Schuetz, C. G. and Savulov, A., BEST D1.1 – Experimental ontology modules formalising concept definition of ATM data, Technical report, BEST Consortium, 2017, URL: http://project-best.eu/downloads/.
29.Russom, P., Data lakes: Purposes, practices, patterns, and platforms, 2017, URL: https://tdwi.org/research/2017/03/best-practices-report-data-lakes. Accessed: 1 July 2019.
30.Niarchakou, S. and Simón Selva, J., ATFCM operations manual – network operations handbook, 21.0 ed., 2017, URL: http://www.eurocontrol.int/sites/default/files/content/documents/nm/network-operations/HANDBOOK/ATFCM-Operations-Manual-next.pdf. Accessed: 1 July 2019.
31.Zaharia, M., An Architecture for Fast and General Data Processing on Large Clusters, Association for Computing Machinery and Morgan & Claypool, 2016.
32.AIXM 5.1.1 - data model (UML), URL: http://aixm.aero/document/aixm-511-data-model-uml. Accessed: 1 July 2019.
33.AIXM 5.1 - temporality concept, Technical report, EUROCONTROL and Federal Aviation Administration, 2010, URL: http://aixm.aero/sites/aixm.aero/files/imce/AIXM51/aixm_temporality_1.0.pdf. Accessed: 1 July 2019.
34.IWXXM 2.1.1 - data model (UML), URL: http://schemas.wmo.int/. Accessed: 1 July 2019.

Keywords

Semantics-based summarisation of ATM information: Managing information overload in pilot briefings using semantic data containers

  • C. G. Schuetz (a1), B. Neumayr (a2), M. Schrefl (a2), E. Gringinger (a1) and S. Wilson (a3)...
  • Please note a correction has been issued for this article.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: