Skip to main content Accessibility help
×
Home

The optimum aeroplane and beyond

  • D. I. A. Poll (a1)

Abstract

A summary of the ways in which aviation impacts the environment is presented and the ratio of the energy liberated during a flight to the revenue work done (ETRW) is identified as a key indicator in the assessment of environmental impact. Using the ‘Breguet’ range equation, a number of theorems relating to ETRW are derived and discussed. This is followed by an approximate analysis to produce estimates for the ETRW of aircraft currently in service. It is found that the global fleet average value for ETRW is much higher than those estimated for existing individual aircraft. An explanation of the difference is presented, with the contributions from airline operations and air traffic management identified and quantified. Consideration is then given to the potential for future reduction in ETRW through advances in materials, alternative fuels, structures, aerodynamics and propulsion technologies and the likely benefits are quantified. The improvement in ETRW that could be achieved if this parameter was minimised in the design process with the current level of technology is also considered. Finally, the likelihood of performance improvements being introduced in the short, medium and long term is briefly discussed.

Copyright

References

Hide All
1. Lanchester, F.W. Aerodonetics — constituting the second volume of a complete work on aerial flight, 1908, Archibald Constable, London.
2. Pritchard, J.L. Sir George Cayley — The Inventor of the Aeroplane, 1961, Max Parrish, London.
3. Airbus. Airbus Global Market Forecast 2007-2026, http://www.airbus.com/fileadmin/documents/gmf/PDF_dl/00-all-gmf_2007.pdf.
4. The Boeing Company. Current Market Outlook 2008-2027, http://www.boeing.com/commercial/cmo/pdf/Boeing_Current_Market_Outlook_2008_to_2027.pdf.
5. Ipcc. Climate Change 2007, Synthesis Report. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf.
6. Schumann, U. On conditions for contrail formation from aircraft. Meteorol Zeitschrift, February 1996, NF 5, pp 423.
7. Roberson, W. Fuel conservation strategies: cost index explained. Boeing Commercial Aeromagazine, 2007, Quarter 2.
8. Cavcar, M. Bréguet range equation? J Aircr, 2006, 43, (5), pp 15421544.
9. Hileman, J.I., Katz, J.B., Mantilla, J.G. and Fleming, G. Payload fuel energy efficiency as a metric for aviation environmental performance, September 2008, 26th International Congress of the Aeronautical Sciences, Anchorage, Alaska, USA.
10. Us Department of Transportation. Air Carrier Summary Data, Form 41 Schedule T-2 for 1991-2008, July 2008, Department for Transportation, Washington, DC, USA.
11. Reynolds, T.G. Analysis of lateral flight inefficiency in global air traffic management, September 2008, Eighth AIAA Aviation Technology, Integration and Operations Conference, Anchorage, Alaska, USA.
12. Hileman, J.I., Wong, H.M., Ortiz, D., Brown, N., Maurice, L. and Rumizen, M. The feasibility and potential environmental benefits of alternative fuels for commercial aviation, September 2008, 26th International Congress of the Aeronautical Sciences, Anchorage, Alaska, USA.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed