Skip to main content Accessibility help

On the maximisation of control power in low-speed flight

  • L. M. B. C. Campos (a1) and J. M. G. Marques (a2)


The maximisation of control power is considered for an aircraft with multiple control surfaces, with the force and moment coefficients specified by polynomials of the control surface deflections of degree two. The optimal deflections, which maximise and minimise any force or moment coefficient, are determined subject to constraints on the range of deflection of each control surface. The results are applied to a flying wing configuration to determine: (i/ii) the pitch trim, at the lowest drag for the fastest climb, and at the highest drag for the steepest descent; (iii) the maximum and minimum pitching moment; (iv) the maximum and minimum yaw control power and the fraction needed to compensate an outboard engine failure for several propulsion configurations; (v) the maximum and minimum rolling moment. The optimal use of all control surfaces has significant advantages over using just one, e.g. the range of drag modulation with pitch trim is much wider and the maximum and minimum available control moments larger.


Corresponding author


Hide All
1. Mckinney, L. and Dollyhigh, S. Some trim drag considerations for maneuvering aircraft, 2nd Aircraft Design and Operations Meeting, AIAA, Los Angeles, CA, US, 20–22 July 1970, pp 110.
2. Goldstein, S. and Combs, C. Trimmed drag and maximum flight efficiency of aft tail and canard configurations, 12th Aerospace Sciences Meeting, AIAA, Washington, DC, US, 30 January 197401 February 1974, pp 112.
3. McLaughlin, M.D. Calculations, and comparison with an ideal minimum, of trimmed drag for conventional and canard configurations having various levels of static stability, NASA TN D-8391, 1977, pp 122, Washington, DC, US.
4. Kendall, E. The minimum induced drag, longitudinal trim and static longitudinal stability of two-surface and three-surface airplanes, 2nd Applied Aerodynamics Conference, Seattle, WA, US, 21– 23 August 1964, pp 110.
5. Ende, R. The effects of aft-loaded airfoils on aircraft trim drag, 27th Aerospace Sciences Meeting, AIAA, Meeting Location, Reno, NV US, 09–12 January 1989, pp 19.
6. Campos, L.M.B.C. and Marques, J.M.G. On the minimization of cruise drag due to pitch trim for a flying wing configuration, The CEAS Air and Space Conference, 7–11 Sept 2015, Delft University of Technology, The Netherlands.
7. Rahman, N.U. and Whidborne, J.F. Propulsion and flight controls integration for a blended-wing-body transport aircraft, J Aircr, 2010, 47, (3), pp 895903.
8. Deng, H., Yu, X., Yin, H. and Deng, F. Trim drag prediction for blended-wing-body UAV configuration, Trans Nanjing Univ Aeronaut Astronaut, 2015, 32, (1), pp 133136.
9. Griffin, B.J., Brown, N.A. and Yoo, S.Y. Intelligent control for drag reduction on the X-48B vehicle, AIAA Guidance, Navigation and Control Conference, Portland, Oregon, NV, US, 8–11 August 2011, pp 112.
10. Durham, W.C. Constrained control allocation, J Guidance Control and Dynamics, 16, (4), 1993, pp 717725.
11. Härkegård, O. Dynamic control allocation using constrained quadratic programming, J Guidance Control and Dynamics, 2004, 27, (6), pp 10281034.
12. Bolender, M.A. and Doman, D.B. Nonlinear control allocation using piecewise linear functions: a linear programming approach, J Guidance Control and Dynamics, 2005, 28, (3), pp 558562.
13. Bodson, M. Evaluation of optimization methods for control allocation, J Guidance Control and Dynamics, 2002, 25, (2) pp 380387.
14. Cook, M.V. and Castro, H.V. The longitudinal flying qualities of a blended-wing-body civil transport aircraft, Aeronautical J, 2004, 108, (1080), pp 7584.
15. Roysdon, P.F. Blended wing body lateral-directional stability investigation using 6DOF simulation, Proceedings of the Institution of Mech Engineers, Part G: J Aerospace Engineering, 2016, 228, (1), pp 719.
16. Peterson, T. and Grant, P.R. Handling qualities of a blended wing body aircraft, AIAA Atmospheric Flight Mechanics Conference, Portland, Oregon, US, 08–11 August 2011.
17. Jung, D.W. and Lowenberg, M.H. Stability and control assessment of a blended-wing-body airliner configuration, AIAA Atmospheric Flight Mechanics Conference and Exhibit, San Francisco, California, US, 15–18 August 2005.
18. Cameron, D. and Princen, N. Control allocation challenges and requirements for the blended wing body, AIAA Guidance, Navigation and Control Conference and Exhibit, Dever, CO, US, 14–17 August 2000.
19. Wildschek, A., Stroscher, F., Klimmek, T., Sika, Z., Vampola, T., Valasek, M., Gangsaas, D., Aversa, N. and Berard, A., Gust load alleviation on a large blended wing body airliner, 27th International Congress of the Aeronautical Sciences, Nice, France, 2010.
20. Waters, S.M., Voskuijl, M., Veldhuis, L.L.M. and Geuskens, F.J.J.M.M. Control allocation performance for blended wing body aircraft and its impact on control surface design, Aerospace Science and Technology, 2013, 29, (1), pp 1827.
21. Wildschek, A., Bartosiewicz, Z. and Mozyrska, D. A multi-input multi-output adaptive feed-forward controller for vibration alleviation on a large blended wing body airliner, J Sound and Vibration, 2014, 333, (17), pp 38593880.
22. Kozek, M. and Schirrer, A. (Eds.) Modeling and Control for a Blended Wing Body Aircraft– A Case Study, Advances in Industrial Control, Springer, Berlin, 2015.
23. Peifeng, L., Binqian, Z., Yingchun, C., Changsheng, Y. and Yu, L. Aerodynamic design methodology for a blended wing body transport, Chinese J Aeronautics, 2012, 25, (4), pp 508516.
24. Campos, L.M.B.C. On physical aeroacoustics with some implications for low-noise aircraft design and airport operations, Aerospace, 2015, 2, (1), pp 1790.
25. Huijts, C. and Voskuijl, M. The impact of control allocation on trim drag of blended wing body aircraft, Aerospace Science and Technology, 2015, 46, pp 7281.
26. Okonkwo, P. and Smith, H. Review of evolving trends in blended wing body aircraft design, Progress in Aerospace Sciences, 2016, 82, pp 123.


On the maximisation of control power in low-speed flight

  • L. M. B. C. Campos (a1) and J. M. G. Marques (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed