Skip to main content Accessibility help
×
Home

Non-linear aeroelastic analysis in the time domain of high-aspect-ratio wings: Effect of chord and taper-ratio variation

  • A. Suleman (a1), F. Afonso (a2), J. Vale (a2), É. Oliveira (a2) and F. Lau (a2)...

Abstract

Commercial jets usually have relatively low-aspect-ratio wings, in spite of the associated benefits of increasing the wing aspect-ratio, such as higher lift-to-drag ratios and ranges. This is partially explained by the fact that the wing becomes more flexible by increasing the aspect-ratio that results in higher deflections which can cause aeroelastic instability problems such as flutter. An aeroelastic computational framework capable of evaluating the effects of geometric non-linearities on the aeroelastic performance of high-aspect-ratio wings has been developed and validated using numerical and experimental data. In this work, the aeroelastic performance of a base wing model with 20 m span and 1 m chord is analysed and the effect of changing the wing chord or the taper-ratio is determined. The non-linear static aeroelastic equilibrium solutions are compared in terms of drag polar, root bending moment and natural frequencies, and the change in the flutter speed boundary is assessed as a function of aspect-ratio using a time-marching approach.

Copyright

Corresponding author

References

Hide All
1. Abbas, A., de Vicente, J. and Valero, E. Aerodynamic technologies to improve aircraft performance, Aerospace Science and Technology, 2013, 28, pp 100132.
2. Abbott, I.H. and Von Doenhoff, A.E. Theory of Wing Sections, Including a Summary of Airfoil Data, 1959, Dover Publications, Inc., New York.
3. Allemang, R.J. The modal assurance criterion - twenty years of use and abuse, Sound and Vibration, 2003, 37, (8), pp 1423.
4. Arena, A., Lacarbonara, W. and Marzocca, P. Nonlinear aeroelastic formulation for flexible high-aspect ratio wings via geometrically exact approach, Proceedings of 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2011, AIAA, Denver, Colorado, US.
5. Ballmann, J. (Ed), Flow Modulation and Fluid-Structure Interaction at Airplane Wings. Part of the series Numerical Fluid Mechanics and Multidisciplinary Design , volume 84, 1st ed, Springer, Berlin.
6. Barbarino, S., Bilgen, O., Ajaj, R.M., Friswell, M.I. and Inman, D.J. A Review of morphing aircraft, J Intelligent Material Systems and Structures, 2011, 22, pp 823877.
7. Bathe, K.J. Finite Element Procedures in Engineering Analysis, 1982, Prentice-Hall, New Jersey.
8. Bathe, K.-J. and Noh, G. Insight into an implicit time integration scheme for structural dynamics, Computer and Structures, 2012, 98–99, pp 16.
9. Bazilevs, Y., Takizawa, K. and Tezduyar, T.E. Computational Fluid-Structure Interaction: Methods and Applications. Wiley Series in Computational Mechanics, 1st ed, 2013, John Wiley & Sons, Ltd, New York.
10. Belytschko, T., Lin, J.I. and Chen-Shyh, T. Explicit algorithms for the nonlinear dynamics of shells, Computer Methods in Applied Mechanics and Engineering, 1984, 42, 225251.
11. Bertin, J.J. Aerodynamics for Engineers, 4th ed, 2002, Prentice Hall, New Jersey.
12. Bhatia, K.G. Airplane aeroelasticity: Practice and potential, J Aircr, 2003, 40, (6), pp 10101018.
13. Cesnik, C.E.S. and Brown, E.L. Modeling of a high aspect ratio active flexible wings for roll control, Proceedings of 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2002, Denver, Colorado, US.
14. Cesnik, C.E.S. and Brown, E.L. Active wing warping control of a joined-wing airplane configuration. Proceedings of 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2003, Norfolk, Virginia, US.
15. Cesnik, C.E.S., Senatore, P.J., Su, W., Atkins, E.M. and Shearer, C.M. X-HALE: A very flexible unmanned aerial vehicle for nonlinear aeroelastic tests, AIAA J, 2012, 50, (12), pp 28202833.
16. Chang, C.-S., Hodges, D.H. and Patil, M.J. Flight dynamics of highly flexible aircraft, J Aircr, 2008, 45, (2), pp 538545.
17. Cook, R.G., Palacios, R. and Goulart, P. Robust gust alleviation and stabilization of very flexible aircraft, AIAA J, 2013, 51, (2), pp 330340.
18. Cooper, J.E. and Harmin, M.Y. Dynamic aeroelastic prediction for geometrically nonlinear aircraft, Proceedings of International Forum on Aeroelasticity and Structural Dynamics, IFASD 2011, 2011, Paris, France.
19. Dowell, E.H. and Tang, D. Effects of geometric structural nonlinearity on flutter and limit cycle oscillations of high-aspect-ratio wings, J Fluid and Structure, 2004, 19, pp 291306.
20. Drela, M. Integrated simulation model for preliminary aerodynamic, structural, and control-law design of aircraft. Proceedings of 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 1999, St. Louis, Missouri, US, AIAA Paper 99-1394.
21. Dunn, P. and Dugundji, J. Nonlinear stall flutter and divergence analysis of cantilevered graphit/epoxy wings, AIAA J, 1992, 30, (1), pp 153162.
22. Goland, M. and Buffalo, N.Y. The flutter of a uniform cantilever wing, J Applied Mechanics, 1945, 12, (4).
23. Gregory, N. and O’Reilly, C.L. Low-speed aerodynamic characteristics of NACA 0012 aerofoil sections, including the effects of upper-surface roughness simulation hoar frost, Tech Rep 3726, January 1970, NASA.
24. Hesse, H. and Palacios, R. Reduced-order aeroelastic models for the dynamics of maneuvering flexible aircraft, AIAA J, 2014, 52, (8), pp 17171732.
25. Hirsch, C. Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics, volume 1, 2nd ed, 2007, Butterworth-Heinemann, Oxford.
26. Hodges, D.J. and Pierce, G.A. Introduction to Structural Dynamics and Aeroelasticity, 1996, Press Syndicate of the University of Cambridge, Cambridge, UK.
27. Hulshoff, S. Aeroelasticity course, 2011. University of Delft, Delft, The Netherlands, Course Notes.
28. Kampchen, M., Dafnis, A., Reimerdes, H.G., Britten, G. and Ballmann, J. Dynamic aero-structural response of an elastic wing model, J Fluid and Structure, 2003, 18, pp 6377.
29. Katz, J. and Plotkin, A. Low-speed Aerodynamics, Cambridge University Press, 2001.
30. Lee, S.H. MSC/NASTRAN Nonlinear Analysis, volume I, Handbook. 1992, The MacNeal-Schwendler Corporation.
31. Liebeck, R.H. Design of a blended wing body subsonic design, J Aircr, 2004, 41, (1), pp 1025.
32. Livne, E. and Weisshaar, T. Aeroelasticity of nonconventional airplane configurations - past and future, J Aircr, 2003, 40, (6), pp 10471065.
33. M J Patil, D.H.H. and Cesnik, C.E.S. Characterizing the effects of geometrical nonlinearities on aeroelastic behavior of high-aspect-ratio wings. Proceedings of International Forum on Aeroelasticity and Structural Dynamics, IFASD 1999, 1999, Williamsburg, Virginia, US.
34. Mason, W.H. Program FRICTION - Virginia Tech aerospace engineering aerodynamics and design software collection, Tech Rep, 2006, Department of Aerospace and Ocean Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA.
35. Menter, F.R. Two-equation eddy-viscosity turbulence models for engineering application, AIAA J, 1994, 32, (8), pp 15981605.
36. Murua, J., Palacios, R. and Graham, J.M.R. Applications of the unsteady vortex-lattice method in aircraft aeroelasticity and flight dynamics, Progress in Aerospace Sciences, 2012, 55, pp 4672.
37. NASA Langley Research Center. Turbulence modeling resource, 2DN00: 2d NACA 0012 airfoil validation case. http://turbmodels.larc.nasa.gov/naca0012_val.html. Accessed: 2015-02-10.
38. Palacios, R., Murua, J. and Cook, R. Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft, AIAA J, 2010, 48, (11), pp 26482659.
39. Patil, M.J. Nonlinear gust response of highly flexible aircraft, Proceedings of 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, Hawaii, USA, AIAA Paper 2007–2103.
40. Patil, M.J. and Hodges, D.H. On the importance of aerodynamic and structural geometrical nonlinearities in aeroelastic behavior of high-aspect-ratio wing, J Fluid and Structure, 2004, 19, pp 905915.
41. Patil, M.J. and Hodges, D.H. Flight dynamics of highly flexible flying wings, J Aircraft, 2006, 43, (6), pp 17901799.
42. Patil, M.J., Hodges, D.H. and Cesnik, C.E.S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft, J Aircr, 2001, 38, (1), pp 8894.
43. Petot, D. Differential equation modeling of dynamic stall, Rech. Aerosp, 1989, 5, pp 5972.
44. Raghavan, B. and Patil, M.J. Flight dynamics of high-aspect-ratio flying wings: Effect of large trim deformation, J Aircr, 2009, 46, (5), pp 18081812.
45. Reddy, J.N. An introduction to the Finite Element Method, 3rd ed, 2006, McGraw-Hill.
46. Relvas, A.F.C. Modelling of Nonlinear Aeroelastic Structures using an Integrated Corotational Fluid-Structure Interaction Algorithm. PhD Thesis, 2005, Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisboa, Portugal.
47. Rixen, D.J. Fluid-structure interaction: An introduction to numerical coupled simulations, 2011. University of Delft, Course Notes.
48. Shearer, C.M. and Cesnik, C.E.S. Nonlinear flight dynamics of very flexible aircraft, J Aircr, 2007, 44, (5), pp 15281545.
49. Simpson, R.J.S., Palacios, R. and Murua, J. Induced-drag calculations in the unsteady vortex lattice method, AIAA J, 2013, 51, (7), pp 17751779.
50. Soares, C.A.M. Elementos finitos em mecânica dos sólidos, 1982. CEMUL, Instituto Superior Técnico, Universidade Técnica de Lisboa, Course Notes.
51. Sotoudeh, Z. and Hodges, D.H. Nonlinear aeroelastic analysis of joined-wing aircraft with intrinsic equations. Proceedings of 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2009, Palm Springs, California, US, AIAA Paper 2009-2464.
52. Spalart, P.R. and Allmaras, S.R. A one-equation turbulence model for aerodynamic flows, Recherche Aerospatiale, 1994, (1), 521.
53. Stanewsky, E. Adpative wing and flow control technology, Progress in Aerospace Sciences, 2001, 37, pp 583667.
54. Su, W. and Cesnik, C.E.S. Nonlinear aeroelastic modeling and analysis of fully flexible aircraft. Proceedings of 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2005, Austin, Texas, US.
55. Su, W. and Cesnik, C.E.S. Nonlinear aeroelasticity of a very flexible blended-wing-body aircraft, J Aircr, 2010, 47, (5), pp 15391553.
56. Su, W. and Cesnik, C.E.S. Dynamic response of highly flexible flying wings, AIAA J, 2011, 49, (2), pp 324339.
57. Tang, D. and Dowell, E.H. Experimental and theoretical study on aeroelastic response of high-aspect-ratio wings, AIAA J, 2001, 39, (8), pp 14301441.
58. Tang, D. and Dowell, E.H. Experimental and theoretical study of gust response for high-aspect-ratio wing, AIAA J, 2002, 40, (3), 419429.
59. Tang, D. and Dowell, E.H. Limit cycle hysteresis response for a high-aspect-ratio wing model, J Aircr, 2002, 39, (5), pp 885888.
60. Tang, D., Grasch, A. and Dowell, E.H. Gust response for flexibly suspended high-aspect ratio wings, AIAA J, 2010, 48, (10), pp 24302444.
61. Wang, Z., Chen, P., Liu, D. and Mook, D. Nonlinear-aerodynamic/nonlinear-structure interaction methodology for a high-altitude-long-endurance wing, J Aircr, 2010, 47, (2), pp 556566.
62. Wolkovitch, J. The joined wing: An overview, J Aircr, 1986, 23, (3), pp 161178.
63. Wright, J.R. and Cooper, J.E. Introduction to Aircraft Aeroelasticity and Loads, 2007, Aerospace Series. John Wiley & Sons, Ltd, Chichester, UK.
64. Yates, E.C. AGARD standard aeroelastic configurations for dynamic response i-wing 445.6, Tech Rep, 1988, 765.
65. Zienkiewicz, O.C. The Finite Element Method in Engineering Science, 3rd ed, 1977, McGraw-Hill, London, UK.

Keywords

Related content

Powered by UNSILO

Non-linear aeroelastic analysis in the time domain of high-aspect-ratio wings: Effect of chord and taper-ratio variation

  • A. Suleman (a1), F. Afonso (a2), J. Vale (a2), É. Oliveira (a2) and F. Lau (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.