Skip to main content Accessibility help
×
Home

The NASA B737-100 high-lift flight research programme — measurements and computations

  • L. P. Yip (a1), C. P. van Dam (a2), J. H. Whitehead (a1), J. D. Hardin (a3), S. J. Miley (a4), R. C. Potter (a5), A. Bertelrud (a6), D. C. Edge (a7) and P.E. Willard (a8)...

Abstract

The aerodynamic performance of a multi-element high-lift system has a critical influence on the direct operating cost of a subsonic civil transport aircraft. A thorough understanding of the aerodynamic characteristics of these multi-element aerofoils and wings allows aircraft companies to design and build more competitive aircraft with high-lift systems that are less complex and lighter for given high-lift performance or that have improved lift and drag characteristics for given system complexity and weight. Flight experiments on NASA Langley's B737-100 aircraft have been conducted to further enhance the understanding of the complex flows about multi-element high-lift systems at full-scale flight conditions. In this paper, an overview of the flight program is provided, followed by highlights of experimental results and computational analysis. Measurements included surface pressures on the slats, main element and flap elements using flush pressure ports and pressure belts, surface shear stresses using Preston tubes, off-surface velocity distributions using boundary layer/wake rakes, aeroelastic deformations of the flap elements using an optical positioning system, and boundary layer transition detection using hot-film anemometers and an infrared imaging system. Boundary layer transition measurements on the slat using hot-film sensors are correlated with the flow visualisation results from an infrared imaging technique. Extensive application of several computational techniques and comparisons with flight measurements are shown for a limited number of cases. This program has generated an extensive set of data, much of which are still being analysed.

Copyright

References

Hide All
1. Smith, A.M.O. Aerodynamics of high-lift airfoil systems, Fluid Dynamics of Aircraft Stalling, AGARD CP-102, November, 1972, pp 10/1-27.
2. Smith, A.M.O. High-lift aerodynamics, J Aircr, 12, (6), June 1975, pp 501530.
3. Meredith, P.T. Viscous phenomena affecting high-lift systems and suggestions for future CFD development, High Lift System Aerodynamics, AGARD CP-515, September 1993, pp 19/1-8.
4. Woodward, D.S. and Lean, D.E. Where is high-lift today? — A review of past UK research programmes, High Lift System Aerodynamics, AGARD CP-515, September 1993, pp 1/1-45.
5. Thibert, J.J., The GARTEUR high lift research programme, High Lift System Aerodynamics, AGARD CP-515, September 1993, pp 16/1-21.
6. Greff, E. In-flight measurement of static pressures and boundary layer state with integrated sensors, J Aircr, May 1991, 28, pp 289299.
7. Yip, L.P., Vijoen, P.M.H.W., Hardin, J.D. and van Dam, C.P. In-flight pressure measurements on a subsonic transport high-lift wing section, High-Lift Systems Aerodynamics, AGARD CP-515, September 1993, pp 21/1-19.
8. Vijgen, P.M.H.W., Hardin, J.D. and Yip, L.P. Flow prediction over a transport multi-element high-lift system and comparison with flight measurements, paper presented at Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, California State University, Long Beach, CA, January 1992.
9. Woodward, D.S., Hardy, B.C. and Ashill, P.R. Some types of scale effect in low-speed high-lift flows, ICAS Paper 4.9.3, 1988.
10. Pfenninger, W. Laminar flow control laminarisation, USAF and NAVY Sponsored Northrop LFC Research Between 1949 and 1967, Special Course on Concepts for Drag Reduction, AGARD Report No 654, March 1977, pp 3/1-75.
11. Gaster, M. On the flow along swept leading edges, Aeronaut Q, May 1967, 18, pp 165184.
12. Poll, D.I.A. Transition in the infinite-swept attachment-line boundary-layer, Aeronaut Q, November 1979, 30, Part 4, pp 607629.
13. Launder, B.E. and Jones, W.P. On the prediction of relaminarisation, ARC CP-1036, 1969.
14. Hardy, B.C. Experimental investigation of attachment-line transition in low-speed high-lift windtunnel testing, Proceedings of the Symposium on Fluid Dynamics of Three-Dimensional Turbulent Shear Flows and Transition, AGARD CP-438, 1988, pp 2/1-17.
15. Arnal, D. and Juillen, J.C. Leading-edge contamination and relaminarisation on a swept wing at incidence, paper presented at Fourth Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Cal State University, Long Beach, CA, January 1989.
16. Hall, P., Malik, M.R., and Poll, D.I.A. On the stability of an infinite swept attachment line boundary layer, Proc R Soc Lond, 1984, A395, pp 229245.
17. Narasimha, R. and Sreenivasan, K.R. Relaminarisation of fluid flows, Adv in App Mechs, 1979, 19, pp 221309.
18. Beasley, J.A. Calculation of the laminar boundary layer and prediction of transition on a sheared wing, ARC R & M 3787, 1976.
19. Bertelrud, A. Total head/static measurement of skin friction and surface pressure, AIAA J, March 1977, 15, (3), pp 436438.
20. van Dam, C.P., Vijgen, P.M.H.W., Yip, L.P. and Potter, R.C. Leading-edge transition and relaminarisation phenomena on a subsonic high-lift system, AIAA Paper 93-3140, July 1993.
21. Wallace, L.E. Airborne trailblazer, two decades with NASA Langley's 737 flying laboratory, NASA SP-4216, 1994.
22. White, J.J. Advanced transport operating systems program, SAE Paper 901969, October 1990.
23. Capone, F.J. Longitudinal aerodynamic characteristics of a twinturbofan subsonic transport with nacelles mounted under the wings, NASA TN D-5971, October 1970.
24. Paulson, J.W. Windtunnel results of the aerodynamic characteristics of a 1/8-Scale model of a twin-engine short-haul transport, NASA TMX-74011, April 1977.
25. Montoya, L.C. and Lux, D.P. Comparison of wing pressure distribution from flight tests of flush and external orifices for Mach numbers from 0.50 to 0.97, NASA TM X-56032, April 1975.
26. Strain, N.A. Flight Investigation of Pressure Belt Effect on Measured Pressure Distributions, Master's Thesis, University of California at Davis, June 1993.
27. Whitehead, J.H., Harris, F.K. and Lytle, C.D. Research requirements for a real-time flight measurements and data analysis system for subsonic transport high-lift research, paper presented at 39th International Instrumentation Symposium, Albuquerque, NM, May 1993.
28. Smith, D.G. and Crowder, J.P. The Northern Digital Optotrak for wind-on measurement of model deflections, paper presented at 71 st Semi-Annual Meeting of the Supersonic Tunnel Association, Burbank, CA, April 1989. 14.
29. Brandon, J.M., Manuel, G.S., Wright, R.E. and Holmes, B.J. In-flight flow visualisation using infrared imaging, J Aircr, July 1990, 27, (6), pp 612618.
30. Horstmann, K.H., Redeker, G. and Quast, A. Flight tests with a natural laminar flow glove on a transport aircraft, AIAA Paper 90-3044-CP, 1990.
31. Horstmann, K.H. Institute for Design Aerodynamics, German Aerospace Research Establishment, Braunschweig — Personal Communication, June 1994.
32. Gracey, W. Measurement of aircraft speed and altitude, NASA RP- 1046, May 1980.
33. van Dam, C.P., Los, S.M., Miley, S.J., Yip, L.P., Banks, D.W., Roback, V.E. and Bertelrud, A. Analysis of in-flight boundary- layer state measurements on a subsonic transport wing in high-lift configuration, AIAA Paper 95-3911, September 1995.
34. Mavriplis, D.J. and Venkatakrishnan, V. A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes, AIAA Paper 95-0345, January 1995.
35. Mathias, D.L., Roth, K.R., Ross, J.C., Rogers, J.C. and Cummings, R.M. Navier-Stokes analysis of the flow about a flap edge, AIAA Paper 95-0185, January 1995.
36. Ashby, D.L., Dudley, M.R., Iguchi, S.K., Browne, L. and Katz, J. Potential flow theory and operation guide for the panel code PMARC, NASA TM-102851, January 1991.
37. Edge, D.C. Three-Dimensional Computational Aerodynamic Analysis of a Transport High-Lift Configuration, Master's Thesis, North Carolina State University, July 1994.
38. Edge, D.C. and Perkins, J.N. Three-dimensional aerodynamic analysis of a subsonic high-lift transport configuration using Pmarc, AIAA Paper 95-0039, January 1995.
39. Potter, R.C. Viscous-flow analysis of a subsonic transport aircraft high-lift system and correlation with flight data, Master's Thesis, University of California at Davis, June 1994.
40. Potter, R.C., van Dam, C.P. and Hardin, J.D. Viscous-flow analysis of a subsonic transport high-lift system including comparisons with flight-measured results, AIAA Paper 95-0043, January 1995.
41. Mavriplis, D.J. Turbulent flow calculations using unstructured and adaptive meshes, lnt JNumer Methods in Fluids, 1991, 13, pp 11311152.
42. Anderson, W.K. and Bonhaus, D.L. An implicit, upwind algorithm for computing turbulent flows on unstructured grids, J of Comp and Fluids, 1994, 23, pp 121.
43. Spalart, P.R. and Allmaras, S.R. A one-equation turbulence model for aerodynamic flows, AIAA Paper 92-0439, January 1992.
44. Mavriplis, D.J. An advancing front Delaunay triangularisation algorithm designed for robustness, AIAA Paper 93-0671, January 1993.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed