1.
Smith, H. A review of supersonic business jet design issues, The Aeronautical Journal, 2007, 111, (1126), pp 761–776. doi: 10.1017/S0001924000001883.
2.
Sun, Y. and Smith, H. Review and prospect of supersonic business jet design, Progress in Aerospace Sciences, 2017, 90, pp 12–38. doi: 10.1016/j.paerosci.2016.12.003.
5.
Sakata, K. Japan’s supersonic technology and business jet perspectives, 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, 2013.
9.
Stocking, P. E-5 neutrino supersonic business jet project executive summery, 2005/2006 MSc Aerospace Vehicle Design, 2005.
10.
Smith, H. E-5 supersonic business jet: Design specification, 2005.
(11)
Yoshimoto, M. and Uchiyama, N. Optimization of canard surface positioning of supersonic business jet for low boom and low drag design (invited), 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, Florida, 2003, pp 23–27.
12.
Le, D.B. and Li, W. A wing design methodology for low-boom low-drag conceptual supersonic business jet. Virginia Space Grant Consortium Annual Research Conference, Blacksburg, Virginia, 2008.
13.
Kroo, I., Tracy, R., Chase, J. and Sturdza, P. Natural laminar flow for quiet and efficient supersonic aircraft, 40th Aerospace Sciences Meeting & Exhibit, Reno, Nevada, 2002, pp 0146.
14.
Sturdza, P. Extensive supersonic natural laminar flow on the aerion business jet, 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2007.
15.
Simmons, F. and Freund, D. Wing morphing for quiet supersonic jet performance-variable geometry design challenges for business jet utilization, 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005.
16.
Yamazaki, W. and Kusunose, K. Aerodynamic/sonic boom performance evaluation of innovative supersonic transport configurations, Journal of Aircraft, 2016, 53, (4), pp 942–950. doi: 10.2514/1.C033417.
17.
Hunton, L.W., Hicks, R.M. and Mendoza, J.P. Some effects of wing planform on sonic boom, NASA TN D-7160, 1973.
18.
Smith, H., Sziroczák, D., Abbe, G.E. and Okonkwo, P. The genus aircraft conceptual design environment, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 233, (8), pp 2932–2947. doi: 10.1177/0954410018788922.
19.
Sun, Y. and Smith, H. Supersonic business jet conceptual design in a multidisciplinary design analysis optimization environment, 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissimmee, Florida, 2018, AIAA pp 2018–1651.
20.
Sun, Y. and Smith, H. Sonic boom and drag evaluation of supersonic jet concepts, 2018 AIAA/CEAS Aeroacoustics Conference, Georgia, Atlanta, 2018, AIAA 2018–3278.
21.
Sun, Y. and Smith, H. Low-boom low-drag optimization in a multidisciplinary design analysis optimization environment, Aerospace Science and Technology, 2019, 94, doi: 10.1016/j.ast.2019.105387.
22.
Saaris, G.R., Tinoco, E., Lee, J. and Rubbert, P. A502i user’s manual-pan air technology program for solving problems of potential flow about arbitrary configurations, Boeing Document, 1992.
23.
Yuhara, T., Makino, Y. and Rinoie, K. Conceptual design study on liquid hydrogen-fueled supersonic transport considering environmental impacts, Journal of Aircraft, 2016, 53, (4), pp 1168–1173. doi: 10.2514/1.C033369.
24.
Ueno, A., Kanamori, M. and Makino, Y. Multi-fidelity low-boom design based on near-field pressure signature, 54th AIAA Aerospace Sciences Meeting, San Diego, California, 2016, pp 2033.
25.
Kroo, I., Willcox, K., March, A., Haas, A., Rajnarayan, D. and Kays, C. Multifidelity analysis and optimization for supersonic design, NASA/CR–2010–216874, 2010.
26.
Williams, J.E. and Vukelich, S.R. The usaf stability and control digital datcom, AFFDL-TR-79-3032, 1979.
27.
Gur, O., Mason, W.H. and Schetz, J.A. Full-configuration drag estimation, Journal of Aircraft, 2010, 47, (4), pp 1356–1367. doi: 10.2514/1.47557.
28.
Harris, R.V. An analysis and correlation of aircraft wave drag, NASA TM X-947, 1964.
29.
Whitham, G. The flow pattern of a supersonic projectile, Communications on Pure and Applied Mathematics, 1952, 5, (3), pp 301–348. doi: 10.1002/cpa.3160050305.
30.
Cain, T. A correction to sonic boom theory, Aeronautical Journal, 2009, 113, (1149), pp 739–745. doi: 10.1017/S0001924000003390.
31.
Carlson, H.W. Simplified sonic-boom prediction, NASA Technical Paper 1122, 1978.
(32)
Thomas, C.L. Extrapolation of sonic boom pressure signatures by the waveform parameter method, NASA TN D-6832, 1972.
33.
Us standard atmosphere, NASA-TM-X-74335, 1976.
34.
Ma, B., Wang, G., Ren, J., Ye, Z., Lei, Z. and Zha, G. Near-field sonic-boom prediction and analysis with hybrid grid navier–stokes solver, Journal of Aircraft, 2018, 55, (5), pp 1890–1904. doi: 10.2514/1.C034659.
35.
Yamashita, R. and Suzuki, K. Full-field sonic boom simulation in stratified atmosphere, AIAA Journal, 2016, 54, (10), pp 3223–3231. doi: 10.2514/1.J054581.
36.
Feng, X., Li, Z. and Song, B. Research of low boom and low drag supersonic aircraft design, Chinese Journal of Aeronautics, 2014, 27, (3), pp 531–541. doi: 10.1016/j.cja.2014.04.004.
37.
Scarselli, G. and Castorini, E. Preliminary optimization of the sonic boom properties for civil supersonic aircraft, Journal of Aircraft, 2013, 50, (4), pp 1295–1299. doi: 10.2514/1.C031459.
38.
Thomas, C.L. Extrapolation of wind-tunnel sonic boom signatures without use of a whitham f-function, NASA SP-255, 1970.
39.
Hayes, W.D., Haefeli, R.C., and Kulsrud, H. Sonic boom propagation in a stratified atmosphere, with computer program, NASA CR-1299, 1969.
40.
Rech, J. and Leyman, C.S. A case study by aerospatiale and british aerospace on the concorde, AIAA Professional Study Series, 1980.
41.
Orlebar, C. The Concorde Story. 6th ed, Osprey Publishing, Oxford, UK, 1997.
45.
Michalička, J. Supersonic business jets operation specification, Bachelor Thesis, Czech Technical University in Prague, 2015.