Skip to main content Accessibility help

Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight

  • H. W. Kim (a1), A. R. Kenyon (a2), R. E. Brown (a3) and K. Duraisamy (a4)


The aerodynamics and acoustics of a generic coaxial helicopter with a stiff main rotor system and a tail-mounted propulsor are investigated using Brown’s Vorticity Transport Model. In particular, the model is used to capture the aerodynamic interactions that arise between the various components of the configuration. By comparing the aerodynamics of the full configuration of the helicopter to the aerodynamics of various combinations of its sub-components, the influence of these aerodynamic interactions on the behaviour of the system can be isolated. Many of the interactions follow a simple relationship between cause and effect. For instance, ingestion of the main rotor wake produces a direct effect on the unsteadiness in the thrust produced by the propulsor. The causal relationship for other interdependencies within the system is found to be more obscure. For instance, a dependence of the acoustic signature of the aircraft on the tailplane design originates in the changes in loading on the main rotor that arise from the requirement to trim the load on the tailplane that is induced by its interaction with the main rotor wake. The traditional approach to the analysis of interactional effects on the performance of the helicopter relies on characterising the system in terms of a network of possible interactions between the separate components of its configuration. This approach, although conceptually appealing, may obscure the closed-loop nature of some of the aerodynamic interactions within the helicopter system. It is suggested that modern numerical simulation techniques may be ready to supplant any overt reliance on this reductionist type approach and hence may help to forestall future repetition of the long history of unforeseen, interaction-induced dynamic problems that have arisen in various new helicopter designs.



Hide All
1. Bagai, A., Aerodynamic Design of the Sikorsky X2 Technology Demonstrator™ Main Rotor Blade, American Helicopter Society 64th Annual Forum, 29 April-1 May 2008, Montréal, Canada.
2. Burgess, R.K., The ABC™ Rotor – A Historical Perspective, American Helicopter Society 60th Annual Forum, 7-10 June 2004, Baltimore, MD, USA.
3. Linden, A.W. and Ruddell, A.J., An ABC Status Report, American Helicopter Society 37th Annual Forum, 17-20 May 1981, New Orleans, LA, USA.
4. Orchard, M. and Newman, S., The fundamental configuration and design of the compound helicopter, Proceedings of Institution of Mechanical Engineers, 217 Part G: J Aerospace Engineering, G01702, October 2003, pp 297315.
5. Kim, H.W., Kenyon, A.R., Duraisamy, K. and Brown, R.E., Interactional aerodynamics and acoustics of a propeller-augmented compound coaxial helicopter, American Helicopter Society Aeromechanics Specialists’ Meeting, 23-25 January 2008, San Francisco, CA, USA.
6. Brown, R.E., Rotor wake modeling for flight dynamic simulation of helicopters, AIAA J, January 2000, 38, (1), pp 5763.
7. Brown, R.E. and Line, A.J., Efficient high-resolution wake modeling using the vorticity transport equation, AIAA J, April 2005, 43, (7), pp 14341443.
8. Kenyon, A.R. and Brown, R.E., Wake dynamics and rotor-fuselage aerodynamic interactions, American Helicopter Society 63rd Annual Forum, 1-3 May 2007, Virginia Beach, VA, USA.
9. Kim, H.W. and Brown, R.E., Coaxial rotor performance and wake dynamics in steady and manoeuvring flight, American Helicopter Society 62nd Annual Forum, 9-11 May 2006, Phoenix, AZ, USA.
10. Felker III, F.F., Performance and loads data from a wind tunnel test of a full-scale, coaxial, hingeless rotor helicopter, NASA TM 81329/USAARADCOM TR 81-A-27, October 1981.
11. Kim, H.W. and Brown, R.E., Impact of trim strategy and rotor stiffness on coaxial rotor performance, 1st AHS/KSASS International Forum on Rotorcraft Multidisciplinary Technology, 15-17 October 2007, Seoul, Korea.
12. Ruddell, A.J., Advancing Blade Concept (ABC™) Development, American Helicopter Society 32nd Annual Forum, 10-12 May 1976, Washington, DC, USA.
13. Burgess, R.K., Development of the ABC Rotor, American Helicopter Society 27th Annual Forum, May 1971, Washington, DC, USA.
14. Cooper, D.E., YUH-60A Stability and control, J American Helicopter Society, 1978, 23, (3), pp 29.
15. Prouty, R.W. and Amer, K.B., The YAH-64 Empennage and tail rotor – A technical history, American Helicopter Society 38th Annual Forum Proceedings, Anaheim, CA, USA, 4-7 May 1982, pp 247261.
16. Main, B.J. and Mussi, F., EH101 – Development Status Report, Proceedings of the 16th European Rotorcraft Forum, Glasgow, UK, 18-20 September 1990, pp III.2.1.1-12.
17. Cassier, A., Weneckers, R. and Pouradier, J., Aerodynamic development of the Tiger helicopter, proceedings of the American Helicopter Society 50th Annual Forum, 11-13 May 1994, Washington DC, USA.
18. Eglin, P., Aerodynamic design of the NH90 helicopter stabilizer, Proceedings of the 23rd European Rotorcraft Forum, 16-18 September 1997, Dresden, Germany, pp 68.1–10.
19. Frederickson, K.C. and Lamb, J.R., Experimental investigation of main rotor wake induced empennage vibratory airloads for the RAH-66 Comanche helicopter, Proceedings of the American Helicopter Society 49th Annual Forum, 19-21 May 1993, St Louis, MO, USA, pp 10291039.
20. Dingeldein, R.C., Wind-tunnel studies of the performance of multi-rotor configurations, NACA TN-3236, August 1954.
21. Paglino, V.M. and Beno, E.A., Full-scale wind-tunnel investigation of the advancing blade concept rotor system, USAAMRDL TR 71-25, August 1971.
22. Halley, D.H., ABC helicopter stability, control, and vibration evaluation on the Princeton dynamic model track, American Helicopter Society 29th Annual Forum, Washington, DC, USA, May 1973.
23. Paglino, V.M., Forward flight performance of a coaxial rigid rotor, American Helicopter Society 27th Annual Forum, May 1971, Washington, D.C., USA.
24. Sheridan, P.F. and Smith, R.P., Interactional Aerodynamics – A New Challenge to Helicopter technology, J American Helicopter Society, January 1980, 25, (1), pp 321.
25. Leishman, J.G., Principles of Helicopter Aerodynamics, 2nd Ed, 2006, Cambridge University Press, Cambridge, UK.
26. Farassat, F. and Succi, G.P., A review of propeller discrete frequency noise prediction technology with emphasis on two current methods for time domain calculations, J Sound and Vibration, 1980, 71, (3), pp 399419.
27. Kelly, M.E., Duraisamy, K. and Brown, R.E., Blade vortex interaction and airload prediction using the vorticity transport model, American Helicopter Society Specialists’ Conference on Aeromechanics, San Francisco, CA, USA, 23-25 January 2008.
28. Magliozzi, B., Hanson, D.B. and Amiet, R.K., Aeroacoustics of Flight Vehicles: Theory and Practice, NASA, USA.

Related content

Powered by UNSILO

Interactional aerodynamics and acoustics of a hingeless coaxial helicopter with an auxiliary propeller in forward flight

  • H. W. Kim (a1), A. R. Kenyon (a2), R. E. Brown (a3) and K. Duraisamy (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.