Skip to main content Accessibility help

Effectiveness evaluation of fighter using fuzzy Bayes risk weighting method

  • M. Suo (a1), S. Li (a1), Y. Chen (a1), Z. Zhang (a1), B. Zhu (a1) and R. An (a1)...


Multiple Attribute Decision Analysis (MADA), known to be simple and convenient, is one of the most commonly used methods for Effectiveness Evaluation of Fighter (EEF), in which the attribute weight assignment plays a key role. Generally, there are two parts in the index system of MADA, i.e. performance index and decision index (or label), which denote the specific performance and the category of the object, respectively. In some index systems of EEF, the labels can be easily obtained, which are presented as the generations of fighters. However, the existing methods of attribute weight determination usually ignore or do not take full advantage of the supervisory function of labels. To make up for this deficiency, this paper develops an objective method based on fuzzy Bayes risk. In this method, a loss function model based on Gaussian kernel function is proposed to cope with the drawback that the loss function in Bayes risk is usually determined by experts. In order to evaluate the credibility of assigned weights, a longitudinal deviation and transverse residual correlation coefficient model is designed. Finally, a number of experiments, including the comparison experiments on University of California Irvine (UCI) data and EEF, are carried out to illustrate the superiority and applicability of the proposed method.


Corresponding author


Hide All
1.Zhu, B., Zhu, R. and Xiong, X. Fighter Plane Effectiveness Assessment, 1993, Aviation Industry Press, Beijing, China (in Chinese).
2.Ma, F., He, J., Ma, J. and Xia, S. Evaluation of urban green transportation planning based on central point triangle whiten weight function and entropy-AHP, Transportation Research Procedia, 2017, 25, pp 36383648.
3.Liu, S. and Li, H. A human factors integrated methods for weapon system effectiveness evaluation, Man-Machine-Environment System Engineering, 2016, Springer, Singapore, pp 469479.
4.Dong, Y., Wang, L. and Zhang, H. Synthesized index model for fighter plane air combat effectiveness assessment, Acta Aeronautica Et Astronautica Sinica, 2006, 27, (6), pp 10841087, (in Chinese).
5.Wang, L., Zhang, H. and Xu, H. Multi-index synthesize evaluation model based on rough set theory for air combat efficiency, Acta Aeronautica Et Astronautica Sinica, 2008, 29, (4), pp 880885, (in Chinese).
6.Forman, E.H. and Gass, S.I. The analytic hierarchy process: An exposition, Operations Research, 2001, 49, (4), pp 469486.
7.Hwang, C.L. and Lin, M.J. Group Decision Making under Multiple Criteria: Methods and Applications, 1987, Springer-Verlag, Berlin, Germany.
8.Yang, G., Yang, J., Xu, D. and Khoveyni, M. A three-stage hybrid approach for weight assignment in MADM, Omega, 2016, 71, pp 93105.
9.Deng, H., Yeh, C. and Willis Robert, J. Inter-company comparison using modified TOPSIS with objective weights, Computers & Operations Research, 2000, 27, (10), pp 963973.
10.Valkenhoef, G.V. and Tervonen, T. Entropy-optimal weight constraint elicitation with additive multi-attribute utility models, Omega, 2016, 64, pp 112.
11.He, Y., Guo, H., Jin, M. and Ren, P. A linguistic entropy weight method and its application in linguistic multi-attribute group decision making, Nonlinear Dynamics, 2016, 84, (1), pp 399404.
12.Jolliffe, I.T. Principle Component Analysis, 1986, Springer-Verlag, New York, US.
13.Wang, Y. and Luo, Y. Integration of correlations with standard deviations for determining attribute weights in multiple attribute decision making, Mathematical and Computer Modelling, 2010, 51, pp 112.
14.Diakoulaki, D., Mavrotas, G. and Papayannakis, L. Determining objective weights in multiple criteria problems: The critic method, Computers & Operations Research, 1995, 22, (7), pp 763770.
15.Tahib, C.M.I.C., Yusoff, B., Abdullah, M.L. and Wahab, A. F. Conflicting bifuzzy multi-attribute group decision making model with application to flood control project, Group Decision & Negotiation, 2016, 25, (1), pp 157180.
16.Liu, S., Chan, F.T.S. and Ran, W. Decision making for the selection of cloud vendor: An improved approach under group decision-making with integrated weights and objective/subjective attributes, Expert Systems with Applications, 2016, 55, pp 3747.
17.Fu, C. and Yang, S. An attribute weight based feedback model for multiple attributive group decision analysis problems with group consensus requirements in evidential reasoning context, European J Operational Research, 2011, 212, (1), pp 179189.
18.Dong, Y., Xiao, J., Zhang, H. and Wang, T. Managing consensus and weights in iterative multiple-attribute group decision making, Applied Soft Computing, 2016, 48, pp 8090.
19.Chin, K. S., Fu, C. and Wang, Y. A method of determining attribute weights in evidential reasoning approach based on incompatibility among attributes, Computers & Industrial Engineering, 2015, 87, (C), pp 150162.
20.Fu, C. and Xu, D. L. Determining attribute weights to improve solution reliability and its application to selecting leading industries, Annals of Operations Research, 2014, 245, (1-2), pp 401426.
21.Sahoo, M., Sahoo, S., Dhar, A. and Pradhan, B. Effectiveness evaluation of objective and subjective weighting methods for aquifer vulnerability assessment in urban context, J Hydrology, 2016, 541, pp 13031315.
22.Ishibuchi, H. and Yamamoto, T. Rule weight specification in fuzzy rule-based classification systems, IEEE Transactions on Fuzzy Systems, 2005, 13, (4), pp 428435.
23.Suo, M., Zhu, B., Zhou, D., An, R. and Li, S. Neighborhood grid clustering and its application in fault diagnosis of satellite power system, Proceedings of the Institution of Mech Engineers, Part G: J Aerospace Engineering, 2018, doi: 10.1177/0954410017751991.
24.Liang, J., Chin, K.S., Dang, C. and Yam, R.C.M. A new method for measuring uncertainty and fuzziness in rough set theory, Int J General Systems, 2002, 31, (4), pp 331342.
25.Deng, J.L. Introduction to Grey system theory, Sci-Tech Information Services, 1989, pp 124.
26.Suo, M., An, R., Zhou, D. and Li, S. Grid-clustered rough set model for self-learning and fast reduction, Pattern Recognition Letters, 2018, 106, pp 6168.
27.Hu, Q., Yu, D., Liu, J. and Wu, C. Neighborhood rough set based heterogeneous feature subset selection, Information Sciences, 2008, 178, (18), pp 35773594.
28.Yao, Y. A Partition model of granular computing, LNCS Transactions on Rough Sets, 2004, 1, pp 232253.
29.Zhu, X.Z., Zhu, W. and Fan, X.N. Rough set methods in feature selection via submodular function, Soft Computing, 2016, pp 113.
30.Duda, R.O., Hart, P.E. and Stork, D.G. Pattern Classification (2nd Edition), Wiley-Interscience, 2000, pp 5588.
31.Jiang, F. and Sui, Y. A novel approach for discretization of continuous attributes in rough set theory, Knowledge-Based Systems, 2015, 73, (1), pp 324334.
32.Bongers, A. and Torres, J.L. Technological change in U.S. jet fighter aircraft, Research Policy, 2017, 43, (9), pp 15701581.
33.Wang, C., Shao, M., He, Q., Qian, Y. and Qi, Y. Feature subset selection based on fuzzy neighborhood rough sets, Knowledge-Based Systems, 2016, 111, pp 173179.
34.Tan, P., Steinbach, M. and Kumar, V. Introduction to Data Mining, Posts & Telecom Press, 2011.
35.Kumar, S. and Byrne, W. Minimum Bayes-risk word alignments of bilingual texts, Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing, 2002, pp 140-147.
36.Gonzlez-Rubio, J. and Casacuberta, F. Minimum Bayes risk subsequence combination for machine translation, Pattern Analysis & Applications, 2015, 18, (3), pp 523533.
37.Suo, M., Zhu, B., Zhang, Y., An, R. and Li, S. Bayes risk based on Mahalanobis distance and Gaussian kernel for weight assignment in labeled multiple attribute decision making, Knowledge-Based Systems, 2018, 152, pp 2639.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Aeronautical Journal
  • ISSN: 0001-9240
  • EISSN: 2059-6464
  • URL: /core/journals/aeronautical-journal
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed