Skip to main content Accessibility help
×
Home

Effect of thickness and angle-of-attack on the aeroelastic stability of supersonic fins

  • R. D. Firouz-Abadi (a1) and S. M. Alavi (a1)

Abstract

This paper aims at developing an aeroelastic model for the instability analysis of supersonic thick fins. To this aim the modal analysis technique is used for the structural dynamics modelling of a fin with a general structure. An unsteady aerodynamic model is applied based on the shock/expansion analysis over the flat surfaces of the fin along with local application of the piston theory. Assuming a supersonic fin with an arbitrary polygonal cross-section, thickness and initial angle-of-attack, the steady flow properties (e.g. Mach number, density and temperature) are calculated over the flat surfaces of the fin. Then, assuming small amplitude vibrations, the generalised aerodynamic forces are obtained in terms of the structural modal coordinates. Using the obtained model, the effect of thickness, initial angle-of-attack, taper ratio and sweep angle on the aerodynamic derivatives and aeroelastic stability of the fin are studied which show their remarkable effects on the instability Mach number and its type. Specially, the presented results show that increasing the fin thickness dramatically diminishes the stability margin mainly at low angles of attack. Also a sharp decrease of the divergence Mach number is observed by increasing the fin’s incidence angle.

Copyright

Corresponding author

References

Hide All
1. Lighthill, M. Oscillating airfoils at high Mach number, J Aeronautical Sciences, 1953, 20, (6), pp 402406.
2. Ashley, H. and Zartarian, G. Piston theory – A new aerodynamic tool for the aeroelastician, J Aeronaut Sciences, 1956, 23, (12), pp 11091118.
3. Liu, D.D., Yao, Z.X., Sarhaddi, D. and Chaves, F. From piston theory to unified hypersonic supersonic lifting surface method, J Aircraft, 1997, 34, (3), pp 304312.
4. Yates, E.C. Jr and Bennett, R.M. Analysis of supersonic-hypersonic flutter of lifting surfaces at angle-of-attack, J Aircraft, 1972, 9, (7), pp 481489.
5. Hui, W.H. Stability of oscillating wedges and caret wings in hypersonic and supersonic flows, AIAA J, 1969, 8, (7), pp 15241530.
6. Hui, W.H. Supersonic/hypersonic flow past an oscillating flat plate at large angles of attack, J Applied Mathematics and Physics, 1978, 29, (3), pp 414427.
7. Hui, W.H. An analytical theory of supersonic/hypersonic pitching stability, NATO AGARD Symposium on Dynamic Stability Parameters, CP-235, 1978, Paper No 22.
8. Hui, W.H. Unified unsteady supersonic/hypersonic theory of flow past double wedge airfoils, J Applied Mathematics and Physics, 1983, 34, (4), pp 458488.
9. Ramsey, J.K. Influence of thickness and camber on the aeroelastic stability of supersonic throughflow fans, J Propulsion and Power, 1991, 7, (3), pp 404411.
10. Friedmann, P.P., McNamaray, J.J., Thuruthimattamy, B.J. and Nydick, I. Aeroelastic analysis of hypersonic vehicles, J Fluids and Structures, 2004, 19, pp 681712.
11. Friedmann, P.P., McNamaray, J.J., Thuruthimattamy, B.J. and Powell, K.G. Hypersonic Aerothermoelasticity with Application to Reusable Launch Vehicles, 12th AIAA International Space Planes and Hypersonic Systems and Technologies, 2003, AIAA Paper No 2003-7014.
12 McNamaray, J.J., Thuruthimattamy, B.J., Friedmann, P.P. and Powell, K.G. Hypersonic Aerothermoelastic Studies for Reusable Launch Vehicles, 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 2004, AIAA Paper No 2004-1590.
13. Oppenheimer, M.W. and Doman, D.B. A Hypersonic Vehicle Model Developed With Piston Theory, AIAA Atmospheric Flight Mechanics Conference and Exhibit, 2006, AIAA Paper No 2006-6637.
14 Thuruthimattam, B.J., Friedmann, P.P. and Powell, K.G. Computational aeroelastic studies of a generic hypersonic vehicle, Aeronaut J, 2009, 113, (1150), pp 763774.
15. Zhang, W., Ye, Z. and Zhang, C. Analysis of Supersonic Aeroelastic Problem Based on Local Piston Theory Method, 45th AIAA Aerospace Sciences Meeting and Exhibit, 2007, AIAA Paper No. 2007-1072.
16. Zhang, W. Ye, Z. Zhang, C. and Liu, F. Supersonic flutter analysis based on a local piston theory, AIAA J, 2009, 47, (10), pp 23212328.
17. Tuovila, W.J. and McCarty, J.L. Experimental Flutter Results for Cantilever Wing Models at Mach Numbers up to 3·0, NACA RM L55E11, 1955.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed