Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-27T17:39:29.263Z Has data issue: false hasContentIssue false

Attitude tracking control of hypersonic vehicle based on an improved prescribed performance dynamic surface control

Published online by Cambridge University Press:  10 November 2023

Z.Y. Yin
Affiliation:
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
B. Wang*
Affiliation:
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
R.T. Xiong
Affiliation:
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
Z. Xiang
Affiliation:
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
L. Liu
Affiliation:
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
H.J. Fan
Affiliation:
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
C.L. Xue
Affiliation:
National Key Laboratory of Science and Technology on Multispectral Information Processing, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
*
Corresponding author: B. Wang; Email: wb8517@hust.edu.cn

Abstract

In this paper, we investigate the constrained attitude control problem of hypersonic vehicles (HVs). An improved prescribed performance dynamic surface control method is proposed based on an adaptive scaling strategy. Because of the uncertain time-varying disturbances, the controlled state may violate the constraint in the prescribed performance control (PPC) framework. An adaptive scaling strategy is introduced in the PPC method to avoid state violation. The performance function is scaled with respect to the state adaptively. Moreover, a nonlinear disturbance observer is used to compensate the sum of external and other internal disturbances of the system. The proposed method improves the system dynamic performance while ensuring the system robustness. Furthermore, the stability of the closed-loop system is proved by Lyapunov analysis. Finally, numerical simulations are implemented to verify the effectiveness of the PPC method and superiority over other methods.

Type
Research Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Royal Aeronautical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Xu, B. and Shi, Z.K. An overview on flight dynamics and control approaches for hypersonic vehicles. Sci. China Inf. Sci., 2015, 58, (7), pp 119.Google Scholar
Ding, Y.B., Yue, X.K., Chen, G.S. and Si, J.S. Review of control and guidance technology on hypersonic vehicle. Chin. J. Aeronaut., 2022, 35, (7), pp 118.CrossRefGoogle Scholar
Sun, H.B., Li, S.H., Yang, J. and Guo, L. Non-linear disturbance observer-based back-stepping control for airbreathing hypersonic vehicles with mismatched disturbances. Chin. J. Aeronaut., 2014, 8, (17), pp 18521865.Google Scholar
An, H., Liu, J.X., Wang, C.H. and Wu, L.G. Approximate back-stepping fault-tolerant control of the flexible air-breathing hypersonic vehicle. IEEE/ASME Trans. Mechatron., 2015, 21, (3), pp 16801691.CrossRefGoogle Scholar
Zong, Q., Wang, F., Tian, B.L. and Su, R. Robust adaptive dynamic surface control design for a flexible air-breathing hypersonic vehicle with input constraints and uncertainty. Nonlinear Dyn., 2014, 78, pp 289315.CrossRefGoogle Scholar
Sagliano, M., Mooij, E. and Theil, S. Adaptive disturbance-based high-order sliding-mode control for hypersonic-entry vehicles. J. Guid. Control Dyn., 2017, 40, (3), pp 521536.CrossRefGoogle Scholar
Sun, H.B., Li, S.H. and Sun, C.Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn., 2013, 73, pp 229244.CrossRefGoogle Scholar
Sun, H.B., Li, S.H., Sun, C.Y. and Wu, L.G. Robust adaptive integral-sliding-mode fault-tolerant control for airbreathing hypersonic vehicles. Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng., 2012, 226, (10), pp 13441355.Google Scholar
Yang, J., Li, S.H., Sun, C.Y. and Guo, L. Nonlinear-disturbance-observer-based robust flight control for airbreathing hypersonic vehicles. IEEE Trans. Aerosp. Electron. Syst., 2013, 49, (2), pp 12631275.CrossRefGoogle Scholar
Zhu, P., Jiang, J. and Yu, C. Fault-tolerant control of hypersonic vehicles based on fast fault observer under actuator gain loss fault or stuck fault. Aeronaut. J., 2020, 124, (1278), pp 11901207.CrossRefGoogle Scholar
Yun, Y., Tang, S. and Guo, J. Smooth adaptive fixed time convergent controller design for BTT missiles with uncertainties. Aeronaut. J., 2020, 124, (1273), pp 323345.CrossRefGoogle Scholar
Han, X., Liu, L., Fan, H.J. and Cheng, Z.T. Robust approximate optimal control for air-breathing hypersonic vehicle. Int. J. Robust Nonlinear Control, 2023, 33, (7), pp 4117–4140.Google Scholar
Ilchmann, A., Ryan, E.P., Sangwin, C.J. and Guo, L. Tracking with prescribed transient behaviour. ESAIM: Control Opt. Calc. Var., 2002, 7, pp 471493.Google Scholar
Bechlioulis, C.P., Rovithakis, G.A., Sun, C.Y. and Guo, L. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance. IEEE Trans. Autom. Control, 2008, 53, (9), pp 20902099.CrossRefGoogle Scholar
Shao, X.D., Hu, Q.L., Shi, Y. and Jiang, B.Y. Fault-tolerant prescribed performance attitude tracking control for spacecraft under input saturation. IEEE Trans. Control Syst. Technol., 2018, 28, (2), pp 574582.CrossRefGoogle Scholar
Gao, S.H., Liu, X.P., Jing, Y.W. and Dimirovski, G.M. A novel finite-time prescribed performance control scheme for spacecraft attitude tracking. Aerosp. Sci. Technol., 2021, 118, pp 107044.CrossRefGoogle Scholar
Hua, C.C., Chen, J.N., Guan, X.P. and Dimirovski, G.M. Adaptive prescribed performance control of QUAVs with unknown time-varying payload and wind gust disturbance. J. Franklin Inst., 2018, 355, (14), pp 63236338.CrossRefGoogle Scholar
Bechlioulis, C.P. and Rovithakis, G.A. Decentralized robust synchronization of unknown high order nonlinear multi-agent systems with prescribed transient and steady state performance. IEEE Trans. Autom. Control, 2016, 62, (1), pp 123134.CrossRefGoogle Scholar
Bechlioulis, C.P. and Rovithakis, G.A. Prescribed performance adaptive control for multi-input multi-output affine in the control nonlinear systems. IEEE Trans. Autom. Control, 2010, 55, (5), pp 12201226.CrossRefGoogle Scholar
Bu, X.W., Wu, X.Y., Zhu, F.J., Huang, J.Q., Ma, Z. and Zhang, R. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors. ISA Trans., 2015, 59, pp 149159.CrossRefGoogle ScholarPubMed
Bu, X.W., Qi, Q., Jiang, B. and Huang, J.Q. A simplified finite-time Fuzzy neural controller with prescribed performance applied to Waverider aircraft. IEEE Trans. Fuzzy Syst., 2022, 30, (7), pp 25292537.CrossRefGoogle Scholar
Wei, C.S., Luo, J.J., Yin, Z.Y. and Yuan, J.P. Leader-following consensus of second-order multi-agent systems with arbitrarily appointed-time prescribed performance, IET Control Theory Appl., 2018, 12, (16), pp 22762286.CrossRefGoogle Scholar
Liu, Y., Li, G., Li, Y.C. and Wu, Y.H. Novel prescribed performance control scheme for flexible hypersonic flight vehicles with nonaffine dynamics and neural approximation. Int. J. Aerosp. Eng., 2021, 13, pp 114.Google Scholar
Zhu, S.P., Xu, T., Wei, C.S. and Wang, Z. Learning-based adaptive fault tolerant control for hypersonic flight vehicles with abrupt actuator faults and finite time prescribed tracking performance. Eur. J. Control, 2021, 58, pp 1726.CrossRefGoogle Scholar
Keshmiri, S., Colgren, R., Mirmirani, M. and Bai, R.Y. Six DoF nonlinear equations of motion for a generic hypersonic vehicle. AIAA Atmospheric Flight Mech. Conf. Exhibit, 20 August - 23 August, 2007, Hilton Head, South Carolina, America.Google Scholar
Zhang, C., Ma, G.F., Sun, Y.C. and Li, C.J. Simple model-free attitude control design for flexible spacecraft with prescribed performance. Proc. Inst. Mech. Eng. Part G: J. Aerosp. Eng., 2019, 233, (8), pp 27602771.CrossRefGoogle Scholar
Wang, W. and Wen, C.Y. Adaptive actuator failure compensation control of uncertain nonlinear systems with guaranteed transient performance. Automatica, 2010, 46, (12), pp 20822091.CrossRefGoogle Scholar
Bu, X.W. Guaranteeing prescribed performance for air-breathing hypersonic vehicles via an adaptive non-affine tracking controller. Acta Astronaut., 2018, 151, pp 368379.CrossRefGoogle Scholar
Bu, X.W., Wu, X.Y., Chen, Y.X. and Bai, R.Y. Design of a class of new nonlinear disturbance observers based on tracking differentiators for uncertain dynamic systems. Int. J. Control Autom. Syst., 2015, 13, (3), pp 595602.CrossRefGoogle Scholar
Hao, F., Zhang, D., Cao, L. and Tang, S. Disturbance decoupling control for flexible air-breathing hypersonic vehicles with mismatched condition. Asian J. Control, 2019, 21, (3) pp 11001110.CrossRefGoogle Scholar
Bu, X.W., Wu, X.Y., Zhang, R., Ma, Z. and Huang, J.Q. Tracking differentiator design for the robust backstepping control of a flexible air-breathing hypersonic vehicle. J. Franklin Inst., 2015, 352, (4) pp 17391765.CrossRefGoogle Scholar
Hu, Q.L., Shi, Y.X. and Shao, X.D. Adaptive fault-tolerant attitude control for satellite reorientation under input saturation. Aerosp. Sci. Technol., 2018, 78, pp 171182.CrossRefGoogle Scholar
Hou, M.Z., Liang, X.L., Duan, G.R. and Bai, R.Y. Adaptive block dynamic surface control for integrated missile guidance and autopilot. Chin. J. Aeronaut., 2013, 26, (3) pp 741750.CrossRefGoogle Scholar