Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-19T20:56:20.399Z Has data issue: false hasContentIssue false

X-Ray Characterization of Phase Equilibria of the Raveau and 2212 Phases in the Bi-Sr-Ca-Cu-0 System

Published online by Cambridge University Press:  06 March 2019

Winnie Wong-Ng
Affiliation:
Ceramics Division National Institute of Standards and Technology Gaithersburg, MD 20899
Lawrence P. Cook
Affiliation:
Ceramics Division National Institute of Standards and Technology Gaithersburg, MD 20899
F. Jiang
Affiliation:
Geology Department University of Maryland College Park, MD 20542
Get access

Abstract

Phase equilibria of two superconductor phases, namely the 20K Raveau phase (Bi2.2-xSr1.8+xCuOz, currently referred to as the 11905 phase) and the 80K 2212 phase of the Bi-Sr-Ca-Cu-0 system were investigated. The amount of Ca-substitution of the Raveau solid solution was determined and the solid solution region can be approximately described as Bi2.2+xSr1.8-X-Y CayCu1±x/2Ow (referred to as the Ca-Raveau phase or the 119x5, ‘ with 0<x<0.15, 0<y<0.5. To determine the melting equilibria of the 2212 phase, a procedure involving the use of a wicking technique to capture the melt was applied. X-ray powder diffraction (XPD) and quantitative energy dispersive x-ray spectroscopy (EDS) were used to analyse the phases present in the residual and melt, respectively. The approximate primary crystallization field of the incongruently melting 2212 phase was illustrated.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Shiohara, Y., Nakgawa, M., Suga, T., Ishige, K., Oyma, T., Izumi, T., Nagaya, S., Miyajima, M., Hirbayshi, I., and Tanak, S., Advances in Supercnductivity II, Proceedings of the 2nd International symposium on superconductivity (ISS ‘89), Nov. 14-17, 1989, Tsukuba, Ishiguro, T. and Kajimura, K., Eds.Google Scholar
[2] Matheis, D. P., Misture, S. T. and Snyder, R. L., Physica C 217 319 (1993).Google Scholar
[3] Heeb, B., Oesch, S., Bohac, P., and Gauckler, L. J., J. Mater. Res. 7 [No. 11] 2948 (1992).Google Scholar
[4] Zhang, W. and Hellstrom, E. E., Physica c 218 141 (1993).Google Scholar
[5] Sandhage, K. H., Riley, G. N., Jr., and Carter, W., J. Metal., 43 21 (1991).Google Scholar
[6] Sato, K., Hikata, T., Mukai, H., Ueyama, M., shibata, N., Kato, T., Masuda, T., Nagata, M., Iwata, K. and Mitsui, T., IEEE Trans Mag. 27 1231 (1991).Google Scholar
[7] Aksenova, T. D., Bratukhin, P. V., shavkin, s. v. and Melnkov, V. L., Antipova, E. V., Khlebova, N. E. and Shikov, A. K., Physica C 205 271 (1993).Google Scholar
[8] Knizek, K., Pollert, E., Sedmidubsky, D., Hejtmanek, J. and Pracharova, J., Physica C 216 211 (1993).Google Scholar
[9] Holesinger, T. G., Miller, D. J. and Chumbley, L. S., Physica C 217 85 (1993).Google Scholar
[10] Majewski, P., Adv. Mater. 4508(1992).Google Scholar
[11] Hettich, B., Frellinger, B., Majewski, P., Popp, T. and Schulze, K., Proceedings of DGM Meeting, 9-11 May 1990 in Garmisch-Partenkirchen, FGR.Google Scholar
[12] Golden, S. J., Bloomer, T. E., Lange, F. F., Segadaes, A. M., Vaidya, K. J. and Cheetham, A. K., J. Am. Ceram. Soc. 74 123 (1991).Google Scholar
[13] Muller, R., th. Schweizer, Bohac, P., Suzuki, R. O. and Gauckler, L. J., Physica C203 299 (1992); Muller, R., Cantoni, M. and Gauckler, L. J., Physica C243 103 (1995).Google Scholar
[14] MacManus-Driscoll, J. I., Wang, P-C, C. Bravman, J., and Beyers, R. B., J. Appl. Phys. (1995).Google Scholar
[15] Polonka, J., Xu, M., Goldman, A. I., Finnemore, D. L. ad Li, Q., Supercond, Sci. Technol 5 157 (1992).Google Scholar
[16] Xu, M., Polonka, J., Goldman, A. I. and Finnemore, D. K., Applied Supercond. 1 NO. 1/2 53 (1993).Google Scholar
[17] Miyashita, S., kato, Y., Komatsu, H., Inoue, T., hayshi, S., Horiuchi, H. and Sueno, S., PhysicaC 213 283 (1993).Google Scholar
[18] Majewski, P., Adv. Mater. 4 508 (1992).Google Scholar
[19] Roth, R. S., Rawn, C. J., Burton, B. P. and Beech, F., J. Res. Natl. Inst. Stand. Technol. (USA) 95 291 (1990).Google Scholar
[20] Hazen, R. M., Properties of High Temperature Superconductors, edited by Ginsberg, D., World Scientific, Singapore, (1990).Google Scholar
[21] X-ray Powder Diffraciton File (PDF), produced by International Center for Diffraction Data, 10 Campus Blvd., Newtown Square, PA.Google Scholar
[22] Roth, R. S., Rawn, C. J. and Bendersky, L. A., J. Mater. Res. 5, No., 1, 46 (1990).Google Scholar
[23] Knizek, K., Pollert, E., Sedmidubsky, D. Hejtmanek, J. ad Pracharova, J., Physica C 216 211 (1993).Google Scholar
[24] Wong-Ng, W. and Cook, L. P., Amer. Ceram. Soc., Westerville, OH, Superconductivity and Ceramic superconductors II, Ceramic Trans., 18 73 (1991).Google Scholar
[25] Wong-Ng, W. and Cook, L. P., Adv. X-ray Anal., 35 633 (1992).Google Scholar
[26] Cook, L. P. and Wong-Ng, W., J. Amer. Ceram. Soc, 77 [7] 1883 (1995).Google Scholar
[27] Heinrich, K. F. J., Electron Beam X-ray Microanalysis, Van Nostrand Reinhold Co., New York, 578 (1981).Google Scholar
[28] Fiori, C. E., Swyt, C. R., Myklebust, R. L., NIST Standard Reference Database No. 36 (1991).Google Scholar