Skip to main content Accessibility help

The Use of Multi-scan Diffraction in Phase Identification

  • Gordon S. Smith (a1) and M. C. Nichols (a1)


Phase identification by X-ray diffraction techniques in a complex mixture would be greatly simplified if the component phases could be physically separated. As opposed to current computer search-match algorithms for phase identification, which presuppose a single diffraction scan on a carefully prepared sample, we propose multi-scan data-taking on a not-so-carefully prepared sample so as to exploit certain aberrations in the diffracted intensities. The result can effectively be a physical separation by diffraction. Examples include exploitation of samples having a preferentially oriented component as well as samples with components having differing crystallite sizes. The techniques can involve diffractometer as well as film techniques.



Hide All
Frevel, L. K., 1982, Structure-Sensitive Search-Match Procedure for Powder Diffraction, Anal. Chem., 54, p. 691697
Nichols, M. C. and Johnson, Quintin, 1980, The Search-Match Problem, in:“Advances In X-ray Analysis”, Plenum Press, NY, Vol 23, p. 273
Nichols, M. C., Smith, D. K. and Johnson, Quintin, 1982, Differential X-ray Diffraction by Wavelength Variation:A Theoretical Basis, Submitted to J.:Appl. Cryst.
Parrish, W. and Huang, T. C., 1982, Accuracy and Precision in X-ray Polycrystalline Diffraction, in:“Advances In X-ray Analysis’. Plenum Press, NY, Vol 25.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed