Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-18T18:26:44.332Z Has data issue: false hasContentIssue false

Synchrotron X-ray Microbeam Characteristics for X-ray Fluorescence Analysis

Published online by Cambridge University Press:  06 March 2019

A. Iida
Affiliation:
Photon Factory, National Laboratory for High Energy Physics 1-1 O-ho, TsukubaIbaraki 305, Japan
T. Noma
Affiliation:
Canon Research Center, Canon Inc. Morinosato-Wakamiya, AtsugiKanagawa 243-01, Japan
Get access

Extract

X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis.

Type
IV. New Developments in X-Ray Sources, Instrumentation and Techniques
Copyright
Copyright © International Centre for Diffraction Data 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Jones, K.W, Kwiatek, W.M., B.M., Gordnn, Hanson, A.L., Pounds, J.G., Rivers, M.L., Sutton, S.R., Thompson, A.C., Underwood, J.H., Giauque, R.D. and Wu, Y.: Adv. in X-Ray Anal. Vol.31 (1988) 59 Google Scholar
2. Hayakawa, S., Gohshi, Y., Iida, A., Aoki, S. and Ishikawa, M.: Nuci. Instrum. and Methods B49 (1990) 555 Google Scholar
3. Underwood, J.H., Thompson, A.C., Wu, Y. and Giauque, R.D.: Nucl, Instrum. and Methods, A266 (1988) 296 Google Scholar
4. Suzuki, Y., Uchida, F. and Hirai, Y.: Jpn. J. Appl. Phys. 28 (1989) L1660Google Scholar
5. A., Iida and T., Noma: Nucl. Instrum, and Methods, B82 (1993) 129 Google Scholar
6. Engstrom, P., Larsson, S., Rindby, A., Buttkewitz, A., Garbe, S., Gaul, G., Knochel, A. and F. Lechtenberg: Nucl. Instrum. and Methods, A302 (1991) 547 Google Scholar
7. Bilderback, D.H., Hoffman, S.A. and Thid, DJ.: Science 263(1994)201 Google Scholar
8. Saitoh, K., Inagawa, K., Kohra, K., Hayashi, C., lida, A. and Kato, N.: Jpn. J. Appl. Phys. 27 (1988) L2131, Rev. Sci. lustrum. 60 (1989) 1519Google Scholar
9. Yun, W.B., Viccaro, P.J., La, B. and Chrzas, J.: Rev. Sci. Instrum. 63 (1992) 582 Google Scholar
10. Bonse, U., Riekel, C. and Snigirev, A.A.: Rev. Sci. Instrum., 63(1992)622 Google Scholar
11. van Langeverde, F., Bowen, D.K., Tros, G.H.J., Vis, R.D., Huizing, A.J. and de Boer, D.K.G.: Nucl. Instrum. and Methods A292 (1990) 719 Google Scholar
12. Jones, K.W. and Gordon, B.M., Anal. Chem., 61(1989)341A Google Scholar
13. Iida, A. and Gohshi, Y., “Handbook on synchrotron radiation”, vol.4. eds. Ebashi, S., Koch, M. and Rubenstein, E. (Elsevier, 1991) p.307 Google Scholar
14. lida, A., Noma, T., Hayakawa, S., Takahashi, M. and Gohshi, Y., Jpn. J. Appl. Phys.Suppl. 32-2(1993) 160 Google Scholar
15. Noma, T. and lida, A., Rev. Sci. Instrum., 65(1994)837 Google Scholar
16. Iida, A., Noma, T. and Hirano, K., Ferroelectrics, 149(1993)117 Google Scholar