Hostname: page-component-7c8c6479df-ph5wq Total loading time: 0 Render date: 2024-03-29T10:19:32.944Z Has data issue: false hasContentIssue false

Rietveld Refinement of YBa2Cu3-xNixOy Prepared by Quenching and Oxygen Gettering

Published online by Cambridge University Press:  06 March 2019

Mark A. Rodriguez
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
Michael O. Eatough
Affiliation:
Sandia National Laboratories Albuquerque, NM 87185
Francesca Licci
Affiliation:
Instito Materiali Speciali per Elettronica r Magnetismo del Consiglio Nazionale delle Ricerche, Via Chiavari, 18/A, I-43100 Parma, Italy
Get access

Abstract

We have refined the structures for YBa2Cu2.94Nio.O6Oy (2% Ni) and YBa2Cu2.8ONio.20Oy (6.67% Ni) at y ∼ 6.95 and y ∼ 6.5 contents. Oxygen was reduced by two independent methods: quenching from 690 °C and oxygen gettering at 450 OC, Cu-O bond lengths were calculated based on Rietveld structure refinements for the various samples; they indicate the likely occupancy of Ni in the plane (Cu2) site of the 123 superconductor.

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1) Xiao, G., Streitz, F. H., Gavrin, A., Du, Y. W., and Chien, C. L., Phys. Rev. B35 8782 (1987).Google Scholar
2) Maeno, Y., et. at., Nature 328 512 (1987)Google Scholar
3) Tarascon, J. M., Barboux, P., Miceli, P. F., Greene, L. H., and Hull, G. W., Phys. Rev. E37 7458 (1988).Google Scholar
4) Renevier, H., Hodeau, J. L., Marezio, M., and Santoro, A., Physica C 220 143 (1994).Google Scholar
5) Kulkarni, R. G., Kuberkar, D. G., Baldha, G. J., and Bichile, G. K., Physica C 217 175 (1993).Google Scholar
6) Bringlcy, J. F., Chen, T. M., Averill, B. A., Wong, K. M., and Poon, S. J., Phys. Rev. B38 2432 (1988).Google Scholar
7) Shimakawa, Y., Kubo, Y., Utsumi, K., Takeda, Y., and Takano, M., Jpn. J. Appl. Phys. 27 L1071 (1988).Google Scholar
8) Hiroi, Z., Takano, M., Takeda, Y., Kanno, R., and Bando, Y., Jpn. J. Appl. Phys. 27 L580 (1988).Google Scholar
9) Xiao, G., et. al, Nature 332 238 (1988).Google Scholar
10) Kajitani, T., et. al, Jpn. J. Appl. Phys. 27 L354 (1988).Google Scholar
11) Xiao, G., et. al, Phys. Rev. Let., 60 1446 (1988).Google Scholar
12) Clayhold, J., et. al, Phys. Rev B39 777 (1989).Google Scholar
13) Howland, R. S., et. al, Phys. Rev. B39 9017 (1989),Google Scholar
14) Shaked, H., Faber, J., Jr, Veal, B. W., Hitterman, R. L., and Paulikas, A. P., Solid State Commun. 75 445 (1990).Google Scholar
15) Ting, S. T., et. al., Physica B163 227 (1990).Google Scholar
16) Balagurov, A. M., Piechota, J., and Pajaczkowska, A., Solid State Commun. 78 407 (1991).Google Scholar
17) Prasanna, T. R. S., Chatteijee, R., Handiey, R. C. O', and Katonji, G., Phys. Rev. B46 448 (1992).Google Scholar
18) Cava, R. J., et. al. Physica C 165, 419 (1990).Google Scholar
19) Raffo, L., Licci, F., and Migliori, A., Phys. Rev. B48 1192 (1993).Google Scholar
20) Larson, A. C. and Vondreele, R. B., Los Alamos National Laboratory Report LA-UR-748, 1994.Google Scholar
21) Nazzal, A. I., el. al, Physica C 153-155 1367 (1988).Google Scholar
22) Cotton, F. A. and Wilkinson, G., Advanced Inorganic Chemistry. 4th ed., John Wiley & Sons, NY, pp. 163.Google Scholar