Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T15:45:14.266Z Has data issue: false hasContentIssue false

The Need for Experimentally Determined X-ray Elastic Constants*

Published online by Cambridge University Press:  06 March 2019

R. H. Marion
Affiliation:
Sandia Laboratories, Albuquerque, Hew Mexico 87115
J. B. Cohen
Affiliation:
Northwestern University, Evanston, Illinois 60201
Get access

Abstract

In order to convert residual strains measured by x-ray diffraction techniques into residual stresses, appropriate x-ray elastic constants have to be measured. Since these x-ray elastic constants may depend on the metallurgical state, deformation, and entire specimen history, errors in stress values may result if the constants are not measured for representative material states. In the present work, it is shown that in same cases these errors may be large.

Type
X-Ray Diffraction Stress Analysis
Copyright
Copyright © International Centre for Diffraction Data 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported by the Office of Naval Research and the U. S. Energy Research and Development Administration.

References

1. Barrett, C. S. and Massalski, T. B., Structure of Metals, 3rd Edition, McGraw-Hill, New York (1966).Google Scholar
2. Macherauch, E., “X-Ray Stress Analysis,” Exp. Mech., 6, 140153 (1966).Google Scholar
3. Faninger, G., “Gitterdehnungen in Verformten Kubischen Metallen,” J. Soc. Mat. Sci., Japan, 19, 4257 (1970).Google Scholar
4. Voigt, W., Lehrbuch der Kristallphysik, Teubner, Leipzig/Berlin, (1928).Google Scholar
5. Reuss, A., “Calculation of Flow Limits of Mixed Crystals on Basis of Plasticity of Single Crystals,” Z. Angew. Math. Mech., 9, 4958 (1929).Google Scholar
6. Kroner, E., “Berechmmg der Elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls,” Z. Phys., 151, 504508, (1958).Google Scholar
7. Bollenrath, F., Hauk, V., and Müller, E. H., “Zur Berechnung der Vielkristallinen Elastizitätskonstanten aus den Werten der Einkristalle,” Z. Metallkunde, 58, 7678 (1976).Google Scholar
8. Taira, S. and Hayashi, K., “X-Ray Investigation of Polycrystalline Metals (On the Effect of Fiber Texture on the Elastic Constants of α-Iron),” Proc. 13th Japan Cong, on Materials Research, 2024 (1970).Google Scholar
9. Evenschor, P. D. and Hank, V., “Röntgenographische Elastizitätskonstanten and Netzebenenstandsverteilungen von Werkstoffen mit Texture,” Z. Metallkunde, 66, 164166 (1975).Google Scholar
10. Arima, J., Hosokawa, N. and Honda, K., “Elastic Deformation Behavior of Two Phase Alloy,” X-Ray Study on Strength and Deformation of Metals (Proceedings of the Seminar), 18, (1971), Tokyo, Japan, (The Society of Materials Science, Japan).Google Scholar
11. Evenschor, P. D. and Hauk, V., “Berechnung der Röntgenographischen Elastizitatskonstauten von Mehrstoffsystemen,” Z. Metallkunde, 66 , 210213 (1975).Google Scholar
12. Prümmer, R. and Macheraueh, E., “Der Verformungseinfluss auf die Röntgenographischen Elastischen Konstanten und die Oberflächeneigenspannungen un Legierter und Chromlegierter Stable,” Z. Naturforsehg, 21A, 661662 (1966).Google Scholar
13. Taira, S., Hayashi, K. and Watase, Z., “X-Ray Investigation on the Deformation of Polycrystalline Metals (On the Change in X-Ray Elastic Constants by Plastic Defamation),” Proc. 12th Japan Cong. on Materials Research, 1-7 (1969).Google Scholar
14. Prümmer, R. and Macherauch, E., “Zur Frage des Wellenlängeneinflusses auf die Röntgenographische Eigenspannngsbestimmung,” Z. Naturforschg., 20A, 1369-1370 (1965).Google Scholar
15. Esquivel, A. L., “X-Ray Diffraction Study of the Effects of Uniaxial Plastic Deformation on Residual Stress Measurements,” Adv. in X-Ray Analysis, 12, 269298 (1969).Google Scholar
16. Prümmer, R., “Röntgenographische Eigenspannungsanalyze bei Gehärteten Stählen,” Proc. 6th Int’1. Conf. on Nondestructive Testing. Hanover, Germany (1970).Google Scholar
17. Marion, R. H. and Cohen, J. B., “Anomalies in Measurement of Residual Stress by X-Ray Diffraction,” Adv. in X-Ray Analysis, 18, 466501 (1974).Google Scholar
18. Society of Automotive Engineers, Residual Stress Measurement by X-Ray Diffraction, SAE J784a, (1971), (Society of Automotive Engineers, Inc., New York, HY).Google Scholar
19. Marion, R. H., Ph.D. Thesis, Northwestern University, Evanston, Illinois (1972).Google Scholar
20. Hauk, V., Herlach, D. and Sesemann, H., “Über Nichtlineare Gitterebenenabstandsverteilungen in Stählen, ihre Entstehung, Berechnung und Berücksichtigung bei der Spannungsermittlung,” Z. Metallkunde, 66, 734737 (1975).Google Scholar
21. Macherauch, E. and Müller, P., “Determination of the Röntgenographic Values of the Elastic Constants of Cold-Stretched Armco Iran and Chromium-Molybdenum Steel,” Arch. Eisenhüttenwesen, 29, 257260 (1958).Google Scholar
22. Fuks, M. Ya. and Belozerov, V. V., “Crystallographic Anisotropy of Elastic Strain of Crystals in Polycrystalline Specimens,” Fiz. Metal. Metalloved, 34, 107113 (1972).Google Scholar