Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-19T23:42:00.576Z Has data issue: false hasContentIssue false

Lattice Parameters of Bronze-Type 3BaO·2R2O3·9TiO2 (R=Sm and Nd) Solid Solutions for Microwave Dielectric Ceramics

Published online by Cambridge University Press:  06 March 2019

Toshiyuki Ohhashi
Affiliation:
Nagoya Institute of TechnologyGokiso-cho, Showa-ku, Nagoya 466, Japan
Kazuhiko Sumiya
Affiliation:
Nagoya Institute of TechnologyGokiso-cho, Showa-ku, Nagoya 466, Japan
Shinya Suzuki
Affiliation:
Nagoya Institute of TechnologyGokiso-cho, Showa-ku, Nagoya 466, Japan
Takashi Okuda
Affiliation:
Nagoya Institute of TechnologyGokiso-cho, Showa-ku, Nagoya 466, Japan
Get access

Extract

Microwave dielectric ceramics with high quality have received attention due to the rapid progress in microwave telecommunication and satellite broadcasting. The desirable properties in microwave dielectric resonators are a high dielectric constant (εr), low dielectric loss (tanδ) (i.e. high Q (Q =1/tanδ)), and low temperature coefficient of the resonant frequency(τf). Properties of dielectric ceramics in the TiO2-rich region of the BaO-Nd2O3-TiO2 ternary system (Fig. 1) were reported to have excellent dielectric constants, low dielectric losses and low temperature coefficients of capacitance by Kolar et al. (1978).

Type
Research Article
Copyright
Copyright © International Centre for Diffraction Data 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bolton, R.L., 1968, Dr Thesis, Ceramic Engineering, University of Illinois, Urbana, Illinois, (University Microfilms International, A Bell & Howell Information Company).Google Scholar
Gens, A.M., Varfolomeev, M.B., Kostomarov, V.S. and Korovin, S.S., 1981, Zh. Neorg. Khim. 26, 896. Translation: Russ. J. Inorg. Chem. 26 (1981) 482.Google Scholar
Hubbard, C.R., 1983, J. Appl.Cryst., 16, 285.Google Scholar
Jaakola, T., A., Uusimäki, R., Rautioaho and S., Leppavuori, 1986, J. Am. Ceram. Soc. 69, C-234.Google Scholar
Kawashima, S., M., Nishida, I., Ueda and H., Ouchi, 1985, Extented Abstracts of the 87th Annual Meeting, American Ceramic Society, Cincinnati, OH, May.Google Scholar
Kolar, D., Z., Stadler, S., Gaberscek and D., Suvorov, 1978, Ber. Dtsh. Keram. Ges. 55, 346.Google Scholar
KoJar, D., S., Gaberscek and B., Volavsek, 1981, J. Solid State Chem. 38, 158.Google Scholar
Matveeva, R.G., Varfolomeev, M.B. and L.S.H., yushchenko, 1984, Zh. Neorg. Khim. 29, 31. Translation: Russ. J. Inorg. Chem. 29 (1984) 17.Google Scholar
Nishigaki, S., H., Kato, S., Yano and R., Kamimura, 1987, Ceram. Bull. 66, 1405.Google Scholar
Ohsato, H., S., Nishigaki and T., Okuda, 1992, Jpn. J. Appl. Phys. 31, 3136.Google Scholar
Ohsato, H., T., Ohhashi and T., Okuda, 1992, Ext. Abstr. AsCA ‘92 Conference, Singapore, November, 14U-50.Google Scholar
Ohsato, H., T., Ohhashi, K., Sumiya, S., Suzuki and T., Okuda, 1993, Jpn. J. Appl. Phys. 32, in press.Google Scholar
Razgon, E.S., Gens, A.M., Varfolomeev, M.B., Korovin, S.S. and Kostomarov, V.S.:, 1980, Zh. Neorg. Khim. 25, 1701. Translation: Russ. J. Inorg. Chem. 25 (1980) 945.Google Scholar
Razgon, E.S., Gens, A.M., Varfolomeev, M.B., Korovin, S.S. and Kostomarov, V.S., 1980, Zh. Neorg, Khim. 25, 2298. Translation: Russ. J. Inorg. Chem. 25 (1980) 1274.Google Scholar
Takahashi, J., T., Ikegami and K., Kageyama, 1991, J. Am. Ceram. Soc. 74,1868. Takahashi, Tjokegami, J. and K., Kageyama, 1991, J. Am. Ceram. Soc. 74, 1873.Google Scholar
Toraya, H., 1986, J. Appl. Cryst., 19, 440.Google Scholar
Wakino, K., K., Minai and H., Tamura, 1984, J. Am. Ceram. Soc. 67 278.Google Scholar
Yamada, A., Y., Utsumi and H., Watarai, 1991, Jpn. J. Appl, Phys. 30, 2350.Google Scholar