Skip to main content Accessibility help

Energy Dispersive XRF Composition Profiling Using Crystal Collimated Incident Radiation

  • W. J. Boettinger (a1), H. E. Burdette (a1) and M. Kuriyama (a1)


In order to measure changes in composition as a function of distance (macrosegregation) in directionally solidified two phase samples, a well collimated incident x-ray beam is required for XRF analysis. This is accomplished using Bragg diffraction of AgKα radiation from a highly perfect Si crystal. Because the incident beam is also monochromatic, additional advantages are realized: a) the backgrounds caused by Compton and thermal diffuse scattering (TDS) of the incident beam are well localized in the energy spectrum and do not interfere with the fluorescent peaks, b) the TDS can be used as a monitor of the incident photon flux and hence eliminates often substantial errors caused by incident beam intensity fluctuations.

Using several prepared standards, the ratio of PbL counts to TDS counts was found to be a function of the total Pb content of the two phase microstructure, with a reproducibility determined only by counting statistics. Furthermore, the function was found to be nearly linear over a wide range of compositions. Standard methods of absorption or enhancement correction can be employed using this ratio. The spatial resolution, determined by profiling a sharp discontinuity between two metals, was 0.5 mm.

Macrosegregation data is presented for Pb-Sn two phase alloys whose compositions range from 35 wt % Pb to 70wt % Pb. Comparison of compositions with those determined by a titration method agrees to within 2 wt % for most of the metallurgical structures present in the work. Somewhat larger deviations were found for samples with high Pb contents with extremely coarse two phase microstructures.



Hide All
1. Sharp, R. M. and Hellawell, A., The Microscopy and Composition of Quenched Solid-Liquid Interfaces, J. Cryst. Growth 5:155 (1969).
2. Boettinger, W. J., Burdette, H. E., Kuriyama, M. and Green, R. E., Jr., Asymmetric Crystal Topographic Camera, Rev, Sci. Instrum. 47:906 (1976).
3. Boettinger, W. J., Coriell, S. R., Biancaniello, F. S. and Cordes, M. R., Solutal Convection and Liquid Diffusion Coefficients in: “NBS: Properties of Electronic Materials,” Manning, J. R. (ed) NBSIR 78-1483 and NBSIR 79-1767.
4. Tschetter, M. J. and Bachman, R. Z., Rapid EDTA Determination of Pb, Talanta 21:106 (1974).
5. See for example Clayton, C. G. and Packer, T. W., Some Applications of Energy Dispersive X-ray Fluorescence Analysis in Minerals, Exploration and Process Control, in “Advances in X-ray Analysis,” Vol. 23 (1980).

Energy Dispersive XRF Composition Profiling Using Crystal Collimated Incident Radiation

  • W. J. Boettinger (a1), H. E. Burdette (a1) and M. Kuriyama (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed