Skip to main content Accessibility help

Common Sources of Error in Electron Probe Microanalysis

  • Kurt F. J. Heinrich (a1)


In order to reduce the error of quantitative electron probe microanalysis, error sources in the preparation and measurement of specimens and standards must be minimized. These sources of error are described, and literature references for detailed study are given. A critical analysis is made of 150 analytical measurements of binary specimens previously discussed by Poole and Thomas. It is shown that the cases of serious errors reported by these authors are mainly due to poorly characterized or measured specimens and, in. some cases, to the omission of characteristic fluorescence corrections. If these sources of error are eliminated, a much more favorable error distribution can be obtained through relatively simple correction calculations. Further progress in quantitative micro probe analysis is dependent upon measurements under well-controlled conditions and standard materials of experimentally proven microhomogeneity and reliably determined composition.



Hide All
1. Castaing, R., “Application des sondes électroniqucs à une méthode d'analyse ponctuelle chimique et cristallographique” (Application of Electron Beams to a Method for Local Chemical and Crystallographical Analysis), Thesis, University of Paris, 1951.
2. Heinrich, K., Bibliography on Electron Probe Microanalysis and Related Subjects, third edition, E. I. DuPont de Nemours & Co., Inc., Wilmington, Delaware, 1963; Supplement, 1965. (Obtainable from the author.)
3. Castaing, R. and Descamps, J., “Sur les bases physiques de l'analyse ponctuelle par spectrographie x” (On the Phvsical Bases of Point Analysis by X-Ray Spectrography), J. Phys. Radium 16: 304, 1955.
4. Thomas, P. M., ‘ A Method for Correcting for Atomic Number Effects in Electron Probe Microanalysis,” At. Energy Res. Estah. (Gt. Brit.) Rept. 4593, 1964.
5. Poole, D. M. and Thomas, P. M., “Correction of Atomic Number Effects in Microprobe Analysis,” in: T. D. McKinley, K. F. J. Heinrich, and D. M. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 269.
6. Yakowitz, H., “Evaluation of Specimen Preparation and the Use of Standards in Electron Probe Microanalysis,” ASTM Spec. Tech. Pubt. 430: 383, 1968.
7. PicMesimer, M. L. and Hallerman, G., “The Influence of the Preparation of Metal Specimens on the Precision of Electron Probe Microanalysis,” U.S. At. Energy Contm. Rept. ORNL-TM-1591, 1965.
8. Adler, I., Dwornik, E. J., and Rose, H. J. Jr., “The Detection of Sulphur in Contamination Spots in Electron Probe X-Ray Microanalysis,” Brit. J. Appl. Phys. 13: 245, 1962.
9. Ranzetta, G. V. T. and Scott, V. D., “Specimen Contamination in Electron Probe Microanalysis and its Prevention Using a Cold Trap,” J. Sri. Instr. 43 : 816, 1966.
10. Borom, M. P. and Hanneman, R. E., “Local Compositional Changes in Alkali Silicate Glasses During Electron Microprobe Analysis,” General Electric Rept. 66-C-484, 1966; J. Appl. Phys. 38: 2406, 1967.
11. Ziebold, T. O. and Ogilvie, R. E., “An Empirical Method for Electron Microanalysis,” Anal. Chem. 36: 322, 1964.
12. Colby, J. W., “The Applicability of Theoretically Calculated Intensity Corrections in Microprobe Analysis,” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 95.
13. Bejman, D. R., “Evaluation of Correction Procedures Used in Electron Probe Microanalysis with Emphasis on Atomic Number Interval 13 to 33, “ Anal. Chem. 39: 418, 1967.
14. Goldstein, J. I., Majeske, F. J., and Yakowitz, H., “Preparation of Electron Probe Microanalyzer Standards Using a Rapid Quench Method,” in: J. B. Newkirk and G. R. Mallett (eds.), Advance! in X-Ray Analysis, Vol. 10, Plenum Press, New York, 1967, p. 431.
15. Duwez, J., Willens, R. H., and Klenient, W. Jr., “Continuous Series of Metastable Solid Solutions in Ag-Cu Alloys,” J. Appl. Phys. 31: 1136, 1960.
16. Liebhafsky, H. A., Pfeiffer, H. G., and Zemany, P. D., “Precision in X-Ray Emission Spectrographic” Anal. Chem. 26: 1257, 1955.
17. Heinrich, K. F. J., “Count Distribution and Precision in X-Ray Fluorescence Analysis,” in: W, M. Mueller (ed.), Advances in X-Ray Analysis. Vol. 3, Plenum Press, New York, 1959, p. 95.
18. Mack, M. and Spielberg, N., “Statistical Factors in X-Ray Intensity Measurements,” Spectrochim. Acta 12: 169, 1958.
19. Birks, L. S. and Batt, A. P., “Use of a Multichannel Analyzer for Electron Probe Analysis,” Anal. Chem. 35: 778, 1963.
20. Heinrich, K. F. J., “Concentration Mapping Device for the Scanning Electron Probe Microanalyzer,” Rev. Sci. Instr. 33: 884, 1962.
21. Deslattes, R. D., Simson, B. G., and La Villa, R. E., “Gas Density Stabilizer for Flow Proportional Counters,” Rev. Sci. Instr. 37: 596, 1966.
22. Davies, T. A., “The Effect of Variations in Ambient Temperature upon the Optical Alinement of an X-Ray Fluorescence Spectrometer,” J. Sci. Instr. 35: 407, 1958.
23. Ogilvie, R. E., “X-Ray Optics in Electron Microanalysis,” ASTM Spec. Tech. publ. 349: 17, 1963.
24. Malissa, H., Elektronensirahl-Mikroanalyse, Springer-Verlag, Vienna and New York, 1966, p. 98.
25. Baun, W. L. and Fischer, D. W., “The Effect of Valence and Coordination on K Series Diagram and Nondiagram Lines of Magnesium, Aluminum, and Silicon,” in: W. M. MueLcr, G. R. Mallett, and M. J. Fav (eds.), Advances in X-Ray Analysis, Vol. 8, Plenum Press, New York, 1965, p. 371.
26. Bender, S. L. and Rapperport, E. J., “Nonproportional Behavior of the Flow Proportional Detector” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 405.
27. Spielberg, N., “Elimination of Intensity Dependent Shifts in Proportional Counter Pulse Height Distributions,” Rev. Sci. Instr. 37: 1268, 1966.
28. Spielberg, N., “Effect of Anode Material on Intensity Dependent Shifts in Proportional Counter Pulse Height Distributions,” Rev. Sci. Instr. 38: 291, 1967.
29. Heinrich, K. F. J., Vieth, D., and Yakowitz, H., “Correction for Non-Linearity of Proportional Counter Systems in Electron Probe X-Ray Microanalysis,” in: G. R. Mallett, M. J. Fay, and W. M. Mueller (eds.). Advances in X-Ray Analysis, Vol. 9, Plenum Press, New York, 1966, p. 208.
30. Philibsrt, J., “L'analyse quantitative en microanalyse par sonde electronique, troisitme partie (Quantitative Analysis in Microanalysis by the Electron Probe), Metaux Corrosion-Ind. 40: 325, 1964.
31. Ziebold, T. O., “The Electron Microanalyzer and Its Applications,” Lecture Notes, Massachusetts Institute of Technology, Summer Session, 1965, S-5.
32. Moreau, G. and Calais, D., “Determination du nume'ro atomique moyen d'un binaire homogene AB (solution solide ou compose1 de'fini)” [Determination of the Mean Atomic Number of a Homogeneous Binary AB (Solid Solution or Definite Composition)], J. Phys. Radium 25: 83A, 1964.
33. Philibert, J., “A Method for Calculating the Absorption Correction in Electron-Probe Microanalysis,” in: H. H. Pattee, V. E. Cosslett. and A. Engstrom (eds.), X-Ray Optks and X-Ray Microanalysis, Academic Press, New York, 1963, p. 379.
34. Theisen, R., Quantitative Electron Microprobe Analysis, Springer-Verlag, New York, 1965.
35. Heinrich, K. F. J. (to be published).
36. Duncumb, P. and Shields, P. K., “Effect of Critical Excitation Potential on the Absorption Correction,” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 284.
37. Heinrich, K. F. J., “X-Ray Absorption Uncertainly,” in: T. D. McKinley, K. F. J. Heinrich, and D. B. Wittry (eds.), The Electron Microprobe, John Wiley & Sons, Inc., New York, 1966, p. 296.
38. Yakowitz, H. and Heinrich, K. F. J., “Quantitative Electron Probe Microanalysis: Absorption Correction Uncertainty,” Mikrockim. Acta, p. 182, 1968.
39. Duncumb, P. and Shields, P. K., “Calculation of Fluorescence Excited by Characteristic Radiation in the X-Ray Microanalyzer,” in: H. H. Pattee, V. E, Cosslett, and A. Engstrom (eds.), X-Ray Optics and X-Ray Microanalysis, Academic Press, New York, 1963, p. 329.
40. Reed, S. J. B., “Characteristic Fluorescence Corrections in Electron-Probe Microanalysis,” Brit. J. Appl. Phys. 16: 913, 1965.
41. Heinrich, K. F. J. and Yakowitz, H., “Quantitative Electron Probe Microanalysis: Fluorescence Correction Uncertainty,” Mikrockim. Acta, 1968 (in press).
42. Fink, R. F., Jopson, R. C., Mark, H., and Swift, C. D., “Atomic Fluorescence Yields,” Rev. Mod. Phys. 38: 513, 1966.
43. Green, M., “The Efficiency of Production of Characteristic X-Radiation,” Thesis, University of Cambridge, Great Britain, 1962.
44. Henoc, J., Maurice, F., and Kirianenko, A., “Microanalyseur a sonde eUectronique, e'tude de la correction de fluorescence due au spectre continu” (Electron Probe Microanalyzer: Study of the Correction for Fluorescence Due to the Continuous Spectrum), Coram. Energie At. (France), Rappt. CEA-R 2421, 1964.
45. Nelms, A. T., “Energy Loss and Range of Electrons and Positrons,” NBS Circ. 577, 1956; Suppl. NBS Circ. 577, 1958.
46. Bishop, H. E., “Calculations of Electron Penetration and X-Ray Production in a Solid Target,” in: R. Castaing, P. Deschamps, and J. Philibert (eds.), X-Ray Optics and Microanalysis, Hermann, Paris, 1966, p. 112.
47. Yakowitz, H., private communication.
48. Duncumb, P. and Reed, S. J. B., “Progress in the Calculation of Stopping Powei and Backscaltct Effects,” Quantitative Electron Probe Microanalysis. Natl. Bur. Std. Spec. Publ. 289, April 1968 (in press).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed