Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-18T18:44:37.088Z Has data issue: false hasContentIssue false

Sample Treatment for TXRF - Requirements and Prospects

Published online by Cambridge University Press:  06 March 2019

Andreas Prange
Affiliation:
Institut für Physik, GKSS-Forsehungszentrum Geesthacht GmbH P.O.Box 1160, 0-2054 Geesthacht, Federal Republic of Germany
Heinrich Schwenke
Affiliation:
Institut für Physik, GKSS-Forsehungszentrum Geesthacht GmbH P.O.Box 1160, 0-2054 Geesthacht, Federal Republic of Germany
Get access

Extract

Total-reflection X-ray fluorescence spectrometry, abbreviated as TXRF, is known for its high sensitivity down to the low pg-level or sub-ppb level, respectively, and its wide dynamic range of about three to four orders of magnitude (Yoneda and Horiuchi, 1971, Wobrauschek and Aiginger, 1980; Knoth and Schwenke, 1978 and 1980, Aiginger and Wobrausohek, 1985, Michaelis et al., 1985, Prange, 1987). Meanwhile several laboratories have purchased commercially available TXRF spectrometers and have started to report favourable about this technique. Applications have been reported from various disciplines: These are estuarine and marine water quality management and research, air pollution studies, mineralogical investigations, biology and medicine (Prange, 1987, Prange et al, 1985; Prange and Kremling, 1985, Prange et al., 1987, Stöβel and Prange, 1985, Michaelis, 1986, Ketelsen and Knöchel, 1985, Leland et al., 1987, von Bohlen et al., 1987, Junge et al., 1983, Hentschke et al., 1985, Hentschke et al., 1985, Gerwinski and Goetz, 1987, von Bohlen et al., 1987), In spite of its close kinship to conventional EDXRF , TXRF is quite different with respect to operation and performance and provides complementary capabilities.

Type
V. XRF Applications
Copyright
Copyright © International Centre for Diffraction Data 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aiginger, H. and P., Wobrauschek, 1985 Total Reflectance X-Ray Spectrometry, Adv. X-Ray Anal. 28: 110.Google Scholar
Bohlen, A.V. , Eller, R. , R., Klockenkämper , and Tölg, G. , 1987 Microanalysis of Solid Samples by Total-Reflection X-Ray Fluorescence Spectrometry, Anal. Chem. 59: 25512555.Google Scholar
Bohlen, A.V. , Klockenkämper, R. , Otto, H. , G., Tölg , and Wiecken, B. , 1987 Qualitative survey analysis of thin layers of tissue samples - Heavy metal traces in human long tissue, Int. Arch. Accup. Environ. Health. 59: 403411.Google Scholar
Gerwinski, W. and Goetz, D. , 1937 Multielement analysis of standard reference materials with Total Reflection X-ray Fluorescence (TXRF), Fresenius Z. Anal. Chem. 327: 690693.Google Scholar
Hentschke, U. , Junge, W. , and Rath, R. , 1985 Chemical and Optical Properties of Columbites, N. Jb. Miner. Abh. 152: 113121.Google Scholar
ICES cooperative research report No. 152.Google Scholar
Junge, W. , J., Knoth , and Rath, R. , 1983 Chemische und optische Untersuchungen von komplexen Titan-Niob-Tantalaten (Betafiten), H. Jb. Miner. Abh. 147:169183.Google Scholar
Ketelsen, P. and Knöchel, A. , 1965 Multielementanalyse von gröβenklassierten Luftstaubproben, Staub Reinhaltung der Luft 45:175178.Google Scholar
Knoth, J. and H., Schwenke , 1978 An X-Ray Fluorescence Spectrometer with Totally Reflecting Sample Support for Trace Analysis at the ppb Level, Fresenius Z. Anal. Chem. 291: 200204.Google Scholar
Knoth, J. and H., Schwenke , 1980 A New Totally Reflecting X-Ray Fluorescence Spectrometer with Detection Limits below 10-11 g, Fresenius Z. Anal. Chem. 301 :79.Google Scholar
Leland, D.J. DIlbrey, D.B. , Leyden, D.E. , Wobrauschek, P. , H., Aiginger , and Puxbaum, H. , 1987 Analysis of Aerosols Using Total Reflection X-Ray Spectrometry, Anal. Chem. 59: 19111914.Google Scholar
Michaelis, W. , Knoth, J. , A., Prange , and H., Schwenke , 1985 Trace Analytical Capabilities of Total-Reflection X-Ray Fluorescence Analysis, Adv. X-Ray Anal. 28: 7583.Google Scholar
Michaelis, W. , 1986 Naβ- und Trockendeposition von Schwermetallen, Technische Mittellungen 79: 266271.Google Scholar
Prange, A. , 1987 Totalreflexions-Röntgenfluoreszenzanalyse, GIT Fachz. Lab. 31:513526.Google Scholar
Prange, A. ,A., Knöchel , and Michaelis, W., 1985 Multielement Determination of Dissolved Heavy Metal Traces in Sea Water by Total-Reflection X-Ray Fluorescence Spectrometry, Anal. Chim. Acta 172: 79100.Google Scholar
Prange, A. and Kremling, K. , 1985 Distribution of Dissolved Molybdenum, Uranium and Vanadium in Baltic Sea Waters, Mar. Chem. 16:259274.Google Scholar
Prange, A. , Knoth, J. , Stöβel, R. -P. , H., Böiddeker , and Kramer, K. , 1987, Determination of Trace Elements in Water Cycle by Total-Reflection X-Ray Fluorescence Spectrometry, Anal. Chlm. Acta 195:275287.Google Scholar
Rastegar, B. , Jundt, F. , Grallmann, A. , F., Rastegar , and Leroy, M.J.F., 1986 Sample Homogeneity in Energy-Dispersive XRF Trace Metal Analysis, X-Ray Spectrometry 15: 83.Google Scholar
Schneider, B. , 1989 The determination of atmospsheric trace metals concentrations by collection of aerosol particles on TXRF-sample holders. submitted to Spectrochib. Acta B.Google Scholar
Stogel, R. -P. and Prange, A. , 1985 Determination of Trace Elements in Rainwater by Total Reflection X-Ray Fluorescence, Anal. Chem. 57:2890–2885.Google Scholar
Wobrauschek, T. and H., Aiginger , 1975 Total-Reflection X-Ray Fluorescence Spectrometric Determination of Elements in Nanogram Amounts, Anal. Chem. 47:352855.Google Scholar
Yoneda, Y. and Horiuchi, T. , 1971 Optical Flats for Use in X-Ray Spectrochemical Microanalysis, Rev. Sci. Instr. 42:10691070.Google Scholar