Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-23T19:03:30.641Z Has data issue: false hasContentIssue false

Mapping the Tres Zapotes Polity

The Effectiveness of Lidar in Tropical Alluvial Settings

Published online by Cambridge University Press:  16 January 2017

Michael L. Loughlin*
Affiliation:
Program for Archaeological Research, University of Kentucky, 1020a Export Street, Lexington, KY 40506
Christopher A. Pool
Affiliation:
Department of Anthropology, University of Kentucky, Lexington, KY 40506christopher.pool@uky.edu
Juan C. Fernandez-Diaz
Affiliation:
National Center for Airborne Laser Mapping, University of Houston, 5000 Gulf Freeway, Houston, TX 77204jfernandez11@uh.edu
Ramesh L. Shrestha
Affiliation:
National Center for Airborne Laser Mapping, University of Houston, 5000 Gulf Freeway, Houston, TX 77204rlshrestha@uh.edu

Abstract

Seasonal wetlands and exuberant crop growth present challenges to systematic archaeological survey in alluvial settings, particularly in the tropical lowlands. Lidar can reduce the time and cost required to survey such areas by allowing targeting of elevated features not buried under recent alluvium, but demographic interpretation requires estimating post-abandonment alluvial depths. The broad alluvial plain between the Papaloapan delta and the Tuxtla Mountains in southern Veracruz, Mexico, offers a valuable case study, featuring seasonally inundated marshes, lakes, and vast fields of sugar cane, a crop infamously obstructive to lidar mapping. Undertaken to reconstruct demographic and organizational change in the Tres Zapotes polity, this study evaluates the benefits and limitations of lidar for archaeological survey in tropical alluvial settings based on overlap between lidar and systematic pedestrian survey and estimates of alluvial depth obtained by auger testing and underscores the importance of timing for lidar mapping in sugar cane.

Los humedales temporales y el crecimiento exuberante de cultivos presentan retos al mapeo arqueológico sistemático en terrenos aluviales, particularmente en las tierras bajas tropicales. El lidar puede reducir el tiempo y el costo requerido para realizar mapeos de dicha aéreas mediante la identificación de elementos elevados que no están cubiertos por aluvión depositado en tiempos recientes, sin embargo, para realizar una interpretación demográfica es necesario estimar la profundidad del aluvión depositado después del abandono de los asentamientos. El amplio valle aluvial entre la delta del Papaloapan y las montañas de Tuxla al sur del estado de Veracruz, México, constituye un muy valioso caso de estudio ya que presenta humedales inundados por temporadas, lagos y amplios campos de cultivo de caña de azúcar, una planta de notoriedad por ser extremadamente obstructiva para el mapeo con lidar. Ejecutado con el objetivo de reconstruir el cambio demográfico y organizacional en la unidad cultural de Tres Zapotes, este estudio evalúa los beneficios y las limitaciones del lidar aplicado a mapeos arqueológicos en ambientes aluviales basado en la superposición de lidar con mapeos basados en recorridos peatonales sistemáticos y estimados de profundidad de aluvión obtenidos con perforaciones de barrena; los resultados resaltan la importación de la calendarización del levantamiento lidar con respecto a ciclo de cosecha de la caña de azúcar.

Type
Research Article
Copyright
Copyright © Society for American Archaeology 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

Bernardini, F., Sgambati, A., Kokelj, M. Montagnari, Zaccaria, C., Micheli, R., Fragiacomo, A., Tiussi, C., Dreossi, D., Tuniz, C., and Min, A. De 2013 Airborne LiDAR Application to Karstic Areas: The Example of Trieste Province (North-Eastern Italy) from Prehistoric Sites to Roman Forts. Journal of Archaeological Science 40:21522160.Google Scholar
Borstein, Joshua A. 2001 Tripping Over Colossal Heads: Settlement Patterns and Population Development in the Upland Olmec Heartland. Unpublished Ph.D. dissertation, Department of Anthropology, Pennsylvania State University, State College, Pennsylvania.Google Scholar
Chase, Arlen F., Chase, Diane Z., Weishampel, John F., Drake, Jason B., Shrestha, Ramesh L., Slatton, K. Clint, Awe, Jaime J., and Carter, William E. 2011 Airborne LiDAR, Archaeology and the Ancient Maya Landscape at Caracol, Belize. Journal of Archaeological Science 38:387398.Google Scholar
Chase, Arlen F. Chase, Diane Z., Fisher, Christpher T., Leisz, Stephen L., and Weishampel, John F. 2012 Geospatial Revolution and Remote Sensing LiDAR in Mesoamerican Archaeology. Proceedings of the National Academy of Science 109(32):1291612921.Google Scholar
Chase, Arlen F., Chase, Diane Z., Awe, Jaime J., Weishampel, John F., Iannone, Gyles, Moyes, Holley, Yaeger, Jason, and Brown, M. Kathryn 2014 The Use of LiDAR in Understanding the Ancient Maya Landscape. Advances in Archaeological Practice: A Journal of the Society for American Archaeology. August:208–221.CrossRefGoogle Scholar
Daneels, Annick 1997 Settlement History in the Lower Cotaxtla Basin. In Olmec to Aztec: Settlement Patterns in the Ancient Gulf Lowlands, edited by Stark, Barbara L. and Arnold, Philip J. III, pp. 206252. University of Arizona Press, Tucson.Google Scholar
Daneels, Annick 2002 El patrón de asentamiento del periodo Clásico en la cuenca baja del Rio Cotaxtla, centro de Veracruz. Unpublished Ph.D. dissertation. Instituto de Investigaciones Antropológicos, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Daneels, Annick 2008 Ball Courts and Politics in the Lower Cotaxtla Valley: A Model to Understand Classic Central Veracruz? In Classic Period Cultural Currents in Southern and Central Veracruz, edited by Arnold, Philip J. III and Pool, Christopher A., pp. 197224. Dumbarton Oaks Research Library and Collections, Washington, D.C. Google Scholar
Devereux, B.J., Amable, G.S., Crow, P., and Cliff, A.D. 2005 The Potential of Airborne Lidar for Detection of Archaeological Sites under Woodland Canopies. Antiquity 79:648660.CrossRefGoogle Scholar
Dunnell, Robert C., and Dancey, William S. 1983 The Siteless Survey: A Regional Scale Data Collection Strategy. In Advances in Archaeological Method and Theory, Volume 6, edited by Schiffer, Michael B., pp. 267287. Academic Press, New York.Google Scholar
Evans, Damian H., Fletcher, Roland J., Pottier, Christophe, Chevance, Jean-Baptiste, Soutif, Dominique, Tan, Boun Suy, Im, Sokrithy, Ea, Darith, Tin, Tina, Kim, Samnang, Cromarty, Christopher, De Greef, Stéphane, Hanus, Kasper, Bâty, Pierre, Kuszinger, Robert, Shimoda, Ichita, and Boornanzian, Glenn 2013 Uncovering Archaeological Landscapes at Angkor Using Lidar. Proceedings of the National Academy of Science 110(31):1259512600.CrossRefGoogle ScholarPubMed
Fernandez-Diaz, Juan C., Carter, William E., Shrestha, Ramesh L., and Glennie, Craig L. 2014 Now You See It … Now You Don’t: Understanding Airborne Mapping LiDAR Collection and Data Production for Archaeological Research in Mesoamerica. Remote Sensing 6:995110001.Google Scholar
Gallagher, Julie M., and Josephs, Richard 2008 Using LiDAR to Detect Cultural Resources in a Forested Environment: An Example from Isle Royale National Park, Michigan, USA. Archaeological Prospection 15:187206.Google Scholar
Hutson, Scott R. 2015 Adapting LiDAR Data for Regional Variation in the Tropics: A Case Study from the Northern Maya Lowlands. Journal of Archaeological Science: Reports 4:252263.Google Scholar
Killion, Thomas W., and Urcid, Javier 2001 The Olmec Legacy: Cultural Continuity and Change in Mexico's Southern Gulf Coast Lowlands. Journal of Field Archaeology 28:325.Google Scholar
Knight, Charles Frederick, Leonard 2007 Palo Erado Wetland Mapping Project, Veracruz, Mexico. Report submitted to the Foundation for the Advancement of Mesoamerican Studies, Incorporated. Electronic document, http://www.famsi.org/reports/05066/05066Knight01.pdf, accessed December 1, 2015.Google Scholar
León Pérez, Ignacio 2003 Jimba 3D Primera fase y segunda fase. Rescate arqueológico realizado en estudios sismológicos. Instituto de Antropología e Historia, Mexico.Google Scholar
Loughlin, Michael L. 2012 El Mesón Regional Survey: Settlement Patterns and Political Economy in the Eastern Papaloapan Basin, Veracruz, Mexico. Unpublished Ph.D. dissertation, Department of Anthropology, University of Kentucky, Lexington.Google Scholar
McNeary, Rory W. A. 2014 Lidar Investigations of Knockdhu Promontory and its Environs, County Antrim, Northern Ireland. Archaeological Prospection 21:263276.Google Scholar
Merrick and Company 2009 Herbert Hoover Dike, Florida LiDAR Report. Florida Division of Emergency Management (FDEM). Electronic document, https://coast.noaa.gov/htdata/lidar1_z/geoid12a/data/528/supplemental/HHD_LiDAR_Mapping_Report.pdf, accessed April 23, 2016.Google Scholar
Pluckhahn, Thomas, and Thompson, Victor D. 2012 Integrating LiDAR Data and Conventional Mapping of the Fort Center Site in Southcentral Florida: A Comparative Approach. Journal of Field Archaeology 37:289301.CrossRefGoogle Scholar
Pool, Christopher A. 2007 Olmec Archaeology and Early Mesoamerica. Cambridge University Press, Cambridge.Google Scholar
Pool, Christopher A., Loughlin, Michael L., Shrestha, Ramesh, Fernández-Díaz, Juan, Pérez, Manuel Alfonso Melgarejo, Montero, Gabriela, García, Gustavo, Mullen, Kyle, Morgan, Kelsey, Muñiz, Isabelle Martínez, and Santori, Michael 2014 Proyecto de Investigación Arqueológica “Estabilidad Social de Largo Tiempo en la Región de Tres Zapotes,” Temporada 2014, Informe Técnico Parcial. Technical report submitted to the Instituto Nacional de Antropología e Historia, Mexico City.Google Scholar
Pool, Christopher A., and Ohnersorgen, Michael A. 2003 Archaeological Survey and Settlement at Tres Zapotes. In Settlement Archaeology and Political Economy at Tres Zapotes, Veracruz, Mexico, edited by Pool, Christopher A., pp. 731. Cotsen Institute of Archaeology Monograph 50. University of California, Los Angeles.Google Scholar
Riley, Melanie A., and Tiffany, Joseph A. 2014 Using LiDAR Data to Locate a Middle Woodland Enclosure and Associated Mounds, Louisa County, Iowa. Journal of Archaeological Science 52:143151.CrossRefGoogle Scholar
Rosenswig, Robert M., López-Torrijos, Ricardo, Antonelli, Caroline, and Mendelsohn, Rebecca R. 2013 Lidar Mapping and Surface Survey of the Izapa State on the Tropical Piedmont of Chiapas, Mexico. Journal of Archaeological Science 40:14931507.Google Scholar
Rust, William F., and Sharer, Robert J. 1988 Olmec Settlement Data from La Venta, Tabasco, Mexico. Science 242:102104.Google Scholar
Santley, Robert S., and Arnold, Philip J. III 1996 Prehispanic Settlement Patterns in the Tuxtla Mountains, Southern Veracruz, Mexico. Journal of Field Archaeology 23(2):225249.Google Scholar
Stark, Barbara L. 1991 Survey Methods and Settlement Features in the Cerro de las Mesas Region. In Settlement Archaeology of Cerro de las Mesas, Veracruz, Mexico, edited by Stark, Barbara L., pp. 3948. Institute of Archaeology Monograph 34. University of California, Los Angeles.Google Scholar
Stark, Barbara L. 2003 Cerro de las Mesas: Social and Ecoomic Perspectives on a Gulf Center. In Urbanism in Mesoamerica, Volume 1, edited by Sanders, William T., Mustache, Alba Guadalupe, and Cobean, Robert H., pp. 391426. Instituto Nacional de Antropología e Historia, Mexico City and the Pennsylvania State University, University Park, Pennsylvania.Google Scholar
Stark, Barbara L. 2008 Polity and Economy in the Western Lower Papaloapan Basin. In Cultural Currents in Southern and Central Veracruz, edited by Arnold, Philip J. III and Pool, Christopher A., pp. 85120. Dumbarton Oaks Research Library Collections, Washington, D.C. Google Scholar
Stoner, Wesley D. 2011 Disjuncture among Classic Period Cultural Landscapes in the Tuxtla Mountains, Southern Veracruz, Mexico. Unpublished Ph. D. dissertation, Department of Anthropology, University of Kentucky, Lexington, Kentucky.Google Scholar
Symonds, Stacey C., Cyphers, Ann, and Lunagómez, Roberto 2002 Asentamiento prehispánico en San Lorenzo Tenochtitlán, Veracruz, Mexico. Instituto de Investigaciones Antropológicas, Universidad Nacional Autónoma de México, Mexico City.Google Scholar
Symonds, Stacey C., and Lunagómez, Roberto 1997 Settlement System and Population Development at San Lorenzo. In Olmec to Aztec: Settlement Patterns in the Ancient Gulf Lowlands, edited by Stark, Barbara L. and Arnold, Philip J. III, pp. 144173. University of Arizona Press, Tucson.Google Scholar
Von Nagy, Christopher 2003 Of Meandering Rivers and Shifting Towns: Landscape Evolution and Community within the Grijalva Delta. Unpublished Ph.D. dissertation, Department of Anthropology, Tulane University, New Orleans.Google Scholar
Wendt, Carl J. 2003 Buried Occupational Deposits at Tres Zapotes. In Settlement Archaeology and Political Economy at Tres Zapotes, Veracruz, Mexico, edited by Pool, Christopher A., pp. 3246. Cotsen Institute of Archaeology Monograph 50. University of California Los Angeles.Google Scholar