Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T16:18:45.179Z Has data issue: false hasContentIssue false

Supercritical multitype branching processes: the ancestral types of typical individuals

Published online by Cambridge University Press:  01 July 2016

Hans-Otto Georgii*
Affiliation:
Universität München
Ellen Baake*
Affiliation:
Universität Greifswald
*
Postal address: Institut für Mathematik, Universität München, Theresienstraße 39, D-80333 München, Germany. Email address: georgii@mathematik.uni-muenchen.de
∗∗ Postal address: Institut für Mathematik und Informatik, Universität Greifswald, Jahnstraße 15a, D-17487 Greifswald, Germany.

Abstract

For supercritical multitype Markov branching processes in continuous time, we investigate the evolution of types along those lineages that survive up to some time t. We establish almost-sure convergence theorems for both time and population averages of ancestral types (conditioned on nonextinction), and identify the mutation process describing the type evolution along typical lineages. An important tool is a representation of the family tree in terms of a suitable size-biased tree with trunk. As a by-product, this representation allows a ‘conceptual proof’ (in the sense of Kurtz et al.) of the continuous-time version of the Kesten-Stigum theorem.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2003 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Athreya, K. B. (1968). Some results on multitype continuous time Markov branching processes. Ann. Math. Statist. 39, 347357.CrossRefGoogle Scholar
[2] Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, New York.CrossRefGoogle Scholar
[3] Chauvin, B., Rouault, A. and Wakolbinger, A. (1991). Growing conditioned trees. Stoch. Process. Appl. 39, 117130.Google Scholar
[4] Den Hollander, F. (2000). Large Deviations (Fields Inst. Monogr. 14). American Mathematical Society, Providence, RI.Google Scholar
[5] Deuschel, J. D. and Stroock, D. W. (1989). Large Deviations. Academic Press, Boston, MA. Reprinted: American Mathematical Society, Providence, RI, 2001.Google Scholar
[6] Donsker, M. D. and Varadhan, S. R. S. (1975). Asymptotic evaluation of certain Markov process expectations for large time, I. Commun. Pure Appl. Math. 28, 147.CrossRefGoogle Scholar
[7] Donsker, M. D. and Varadhan, S. R. S. (1983). Asymptotic evaluation of certain Markov process expectations for large time, IV. Commun. Pure Appl. Math. 36, 183212.Google Scholar
[8] Durrett, R. (2002). Probability Models for DNA Sequence Evolution. Springer, New York.Google Scholar
[9] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes. Characterization and Convergence. John Wiley, New York.CrossRefGoogle Scholar
[10] Gorostiza, L. G., Roelly, S. and Wakolbinger, A. (1992). Persistence of critical multitype particle and measure branching processes. Prob. Theory Relat. Fields 92, 313335.Google Scholar
[11] Harris, T. E. (1963). The Theory of Branching Processes. Springer, Berlin. Reprinted: Dover, New York, 2002.Google Scholar
[12] Hermisson, J., Redner, O., Wagner, H. and Baake, E. (2002). Mutation–selection balance: ancestry, load, and maximum principle. Theoret. Pop. Biol. 62, 946.CrossRefGoogle ScholarPubMed
[13] Jagers, P. (1989). General branching processes as Markov fields. Stoch. Process. Appl. 32, 183242.CrossRefGoogle Scholar
[14] Jagers, P. (1992). Stabilities and instabilities in population dynamics. J. Appl. Prob. 29, 770780.CrossRefGoogle Scholar
[15] Jagers, P. and Nerman, O. (1996). The asymptotic composition of supercritical multi-type branching populations. In Séminaire de Probabilités XXX (Lecture Notes Math. 1626), eds Azéma, J., Emery, M., and Yor, M., Springer, Berlin, pp. 4054.CrossRefGoogle Scholar
[16] Kesten, H. and Stigum, B. P. (1966). A limit theorem for multidimensional Galton–Watson processes. Ann. Math. Statist. 37, 12111233.Google Scholar
[17] Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13, 235248.Google Scholar
[18] Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (J. Appl. Prob. Spec. Vol. 19A), eds Gani, J. and Hannan, E. J., Applied Probability Trust, Sheffield, pp. 2743.Google Scholar
[19] Kurtz, T., Lyons, R., Pemantle, R. and Peres, Y. (1997). A conceptual proof of the Kesten–Stigum theorem for multi-type branching processes. In Classical and Modern Branching Processes, eds Athreya, K. B. and Jagers, P., Springer, New York, pp. 181185.Google Scholar
[20] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of L log L criteria for mean behaviour of branching processes. Ann. Prob. 23, 11251138.CrossRefGoogle Scholar
[21] Matthes, K., Kerstan, J. and Mecke, J. (1978). Infinitely Divisible Point Processes. John Wiley, Chichester.Google Scholar
[22] Moehle, M. (2000). Ancestral processes in population genetics—the coalescent. J. Theoret. Biol. 204, 629638.CrossRefGoogle Scholar
[23] Varadhan, S. R. S. (1988). Large deviations. In École d'Été de Probabilités de Saint-Flour XV–XVII, 1985 (Lecture Notes Math. 1362), ed. Hennequin, P. L., Springer, Berlin, pp. 149.Google Scholar