Skip to main content Accessibility help
×
Home

A stochastic algorithm to compute optimal probabilities in the chaos game

  • Laura M. Morato (a1) and Paola Siri (a1)

Abstract

We present a stochastic algorithm which generates optimal probabilities for the chaos game to decompress an image represented by the fixed point of an IFS operator. The algorithm can be seen as a sort of time-inhomogeneous regenerative process. We prove that optimal probabilities exist and, by martingale methods, that the algorithm converges almost surely. The method holds for IFS operators associated with any arbitrary number of possibly overlapping affine contraction maps on the pixels space.

Copyright

Corresponding author

Postal address: Facoltà di Scienze MM.FF.NN., Ca' Vignal 2, Strada le Grazie, 37134 Verona, Italia.
∗∗ Email address: morato@sci.univr.it

References

Hide All
[1] Abenda, S. (1990). Inverse problem for one-dimensional fractal measures via iterated function systems and the moment method. Inverse Problems 6, 885896.
[2] Barnsley, M. F. (1988). Fractals Everywhere. Academic Press, San Diego.
[3] Barnsley, M. F. and Lyman, P. H. (1992). Fractal Image Compression. A. K. Peters, Wellesley.
[4] Bertolotto, G. (1998). Approccio probabilistico nella decompressione algoritmica dei dati immagine: ottimalità e problema inverso. Tesi di Laurea, Università di Verona.
[5] Elton, J. (1987). An ergodic theorem for iterated maps. Ergodic Theory Dynam. Systems 7, 481488.
[6] Forte, B. and Vrscay, E. R. (1994). Solving the inverse problem for function and image approximation using iterated function systems. I. Theoretical basis. 2, 325334.
[7] Forte, B. and Vrscay, E. R. (1994). Solving the inverse problem for function and image approximation using iterated function systems. II. Algorithm and computations. Fractals 2, 335346.
[8] Forte, B. and Vrscay, E. R. (1995). Solving the inverse problem for measures using iterated function systems: a new approach. Adv. Appl. Prob. 27, 800820.
[9] Iosifescu, M. and Grigorescu, S. (1990). Dependence with Complete Connections and its Applications. Cambridge University Press.
[10] Iosifescu, M. and Theodorescu, R. (1969). Random Processes and Learning. Springer, Berlin.
[11] Lutton, E. et al. (1995). Mixed IFS: resolution of the inverse problem using genetic programming. Complex Systems 9, 375398.
[12] Morato, L. M. (1995). Note integrative per il corso di Processi Casuali a.a. 95/96. Corso di Laurea in Scienze dell'Informazione, Università di Verona.
[13] Vrscay, E. R. (1989). Iterated function systems: theory, applications and the inverse problem. In Fractal Geometry and Analysis. Kluwer, Dordrecht, pp. 405468.
[14] Vrscay, E. R. and Roehring, C. J. (1989). Iterated function systems and the inverse problem of fractal construction using moments. In Computers and Mathematics, eds Kaltofen, E. and Watt, S. M. Springer, Berlin, pp. 250259.

Keywords

MSC classification

A stochastic algorithm to compute optimal probabilities in the chaos game

  • Laura M. Morato (a1) and Paola Siri (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed