[1]Abraham, R., Delmas, J.-F. and Hoscheit, P. (2013). A note on the Gromov-Hausdorff-Prokhorov distance between (locally) compact metric measure spaces. Electron. J. Prob. 18, 14.
[2]Addario-Berry, L., Broutin, N. and Goldschmidt, C. (2010). Critical random graphs: limiting constructions and distributional properties. Electron. J. Prob. 15, 741–775.
[3]Addario-Berry, L., Broutin, N. and Goldschmidt, C. (2012). The continuum limit of critical random graphs. Prob. Theory Relat. Fields 152, 367–406.
[4]Addario-Berry, L., Devroye, L. and Janson, S. (2013). Sub-Gaussian tail bounds for the width and height of conditioned Galton–Watson trees. Ann. Prob. 41, 1072–1087.
[5]Aldous, D. (1991). Asymptotic fringe distributions for general families of random trees. Ann. Appl. Prob. 1, 228–266.
[6]Aldous, D. (1991). The continuum random tree. I. Ann. Prob. 19, 1–28.
[7]Aldous, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis, Cambridge University Press, pp. 23–70.
[8]Aldous, D. (1993). The continuum random tree. III. Ann. Prob. 21, 248–289.
[9]Aldous, D. (1997). Brownian excursions, critical random graphs and the multiplicative coalescent. Ann. Prob. 25, 812–854.
[10]Aldous, D. and Lyons, R. (2007). Processes on unimodular random networks. Electron. J. Prob. 12, 1454–1508. (Errata: 22 (2017), 51.)
[11]Auffinger, A., Damron, M. and Hanson, J. (2017). 50 Years of First Passage Percolation. American Mathematical Society, Providence, RI.
[12]Baroni, E., van der Hofstad, R. and Komjáthy, J. (2017). Nonuniversality of weighted random graphs with infinite variance degree. J. Appl. Prob. 54, 146–164.
[13]Benjamini, I. and Schramm, O. (2001). Recurrence of distributional limits of finite planar graphs. Electron. J. Prob. 6, 23.
[14]Benjamini, I., Kozma, G. and Wormald, N. (2014). The mixing time of the giant component of a random graph. Random Structures Algorithms 45, 383–407.
[15]Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2010). First passage percolation on random graphs with finite mean degrees. Ann. Appl. Prob. 20, 1907–1965.
[16]Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2011). First passage percolation on the Erdős–Rényi random graph. Combin. Prob. Comput. 20, 683–707.
[17]Bhamidi, S., van der Hofstad, R. and Hooghiemstra, G. (2017). Universality for first passage percolation on sparse random graphs. Ann. Prob. 45, 2568–2630.
[18]Bhamidi, S., van der Hofstad, R. and Komjáthy, J. (2014). The front of the epidemic spread and first passage percolation. In Celebrating 50 Years of The Applied Probability Trust (J. Appl. Prob. Spec. Vol. 51A), pp. 101–121.
[19]Bhowmick, A. K. et al. (2017). Temporal pattern of (re)tweets reveal cascade migration. In Proceedings of IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ACM, New York, pp. 483–488.
[20]Camarri, M. and Pitman, J. (2000). Limit distributions and random trees derived from the birthday problem with unequal probabilities. Electron. J. Prob. 5, 2.
[21]Ding, J., Kim, J. H., Lubetzky, E. and Peres, Y. (2011). Anatomy of a young giant component in the random graph. Random Structures Algorithms 39, 139–178.
[22]Durrett, R. (2010). Probability: Theory and Examples, 4th edn. Cambridge University Press.
[23]Fill, J. A. and Pemantle, R. (1993). Percolation, first-passage percolation and covering times for Richardson's model on the n-cube. Ann. Appl. Prob. 3, 593–629.
[24]Gandica, Y. et al. (2017). Stationarity of the inter-event power-law distributions. PLoS ONE 12, e0174509.
[25]Hammersley, J. M. and Welsh, D. J. A. (1965). First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Springer, New York, pp. 61–110.
[26]Horváth, D. X. and Kertész, J. (2014). Spreading dynamics on networks: the role of burstiness, topology and non-stationarity. New J. Phys. 16, 073037.
[27]Iribarren, J. L. and Moro, E. (2009). Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103, 038702.
[28]Janson, S. (2012). Simply generated trees, conditioned Galton-Watson trees, random allocations and condensation. Prob. Surveys 9, 103–252.
[29]Janson, S., Knuth, D. E., Łuczak, T. and Pittel, B. (1993). The birth of the giant component. Random Structures Algorithms 4, 231–358.
[30]Jo, H.-H., Perotti, J. I., Kaski, K. and Kertész, J. (2014). Analytically solvable model of spreading dynamics with non-Poissonian processes. Phys. Rev. X 4, 011041.
[31]Karsai, M. et al. (2011). Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E 83, 025102.
[33]Kesten, H. (1986). Subdiffusive behavior of random walk on a random cluster. Ann. Inst. H. Poincaré Prob. Statist. 22, 425–487.
[34]Kesten, H. (1987). Percolation theory and first-passage percolation. Ann. Prob. 15, 1231–1271.
[35]Kesten, H., Ney, P. and Spitzer, F. (1966). The Galton-Watson process with mean one and finite variance. Theory Prob. Appl. 11, 513–540.
[36]Kolchin, V. F. (1986). Random Mappings. Optimization Software, New York.
[37]Le Gall, J.-F. (2005). Random trees and applications. Prob. Surveys 2, 245–311.
[38]Lindvall, T. (1999). On Strassen's theorem on stochastic domination. Electron. Commun. Prob. 4, 51–59.
[39]Lyons, R. and Peres, Y. (2016). Probability on Trees and Networks. Cambridge University Press.
[40]Masuda, N. and Holme, P. (2013). Predicting and controlling infectious disease epidemics using temporal networks. F1000Prime Rep. 5, 6.
[41]Medvedev, A. and Pete, G. (2018). Speeding up non-Markovian first passage percolation with a few extra edges. Supplementary material. Available at http://doi.org/10.1017/apr.2018.39. [42]Meir, A. and Moon, J. W. (1978). On the altitude of nodes in random trees. Canad. J. Math. 30, 997–1015.
[43]Newman, M. E. J. (2003). The structure and function of complex networks. SIAM Rev. 45, 167–256.
[44]Pastor-Satorras, R., Castellano, C., Van Mieghem, P. and Vespignani, A. (2015). Epidemic processes in complex networks. Rev. Mod. Phys. 87, 925–979.
[45]Pemantle, R. (1990). A time-dependent version of Pólya's urn. J. Theoret. Prob. 3, 627–637.
[46]Peres, Y. and Revelle, D. (2005). Scaling limits of the uniform spanning tree and loop-erased random walk on finite graphs. Preprint. Available at https://arxiv.org/abs/math/0410430. [48]Strassen, V. (1965). The existence of probability measures with given marginals. Ann. Math. Statist. 36, 423–439.
[50]Van der Hofstad, R. (2017). Random Graphs and Complex Networks, Vol. 1. Cambridge University Press.
[52]Vespignani, A. (2012). Modelling dynamical processes in complex socio-technical systems. Nature Phys. 8, 32–39.
[53]Wilson, D. B. (1996). Generating random spanning trees more quickly than the cover time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing, ACM, New York, pp. 296–303.
[54]Wormald, N. C. (1999). Models of random regular graphs. In Surveys in Combinatorics, Cambridge University Press, pp. 239–298.