Skip to main content Accessibility help

SIR epidemics on a scale-free spatial nested modular network

  • Alberto Gandolfi (a1) and Lorenzo Cecconi (a2)


We propose a class of random scale-free spatial networks with nested community structures called SHEM and analyze Reed–Frost epidemics with community related independent transmissions. We show that in a specific example of the SHEM the epidemic threshold may be trivial or not as a function of the relation among community sizes, distribution of the number of communities, and transmission rates.


Corresponding author

* Postal address: Dipartimento di Statistica, Informatica, Applicazioni G. Parenti, Università di Firenze, Viale Morgagni 59, 50134 Firenze, Italy. Email address:
** Postal address: Dipartimento di Matematica e Informatica U. Dini, Università di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy. Email address:


Hide All
[1]Aiello, al. (2008). A spatial web graph model with local influence regions. Internet Math. 5, 175196.
[2]Albert, R., Jeong, H. and Barabási, A.-L. (1999). Internet: diameter of the world-wide web. Nature 401, 130131.
[3]Ball, F., Mollison, D. and Scalia-Tomba, G. (1997). Epidemics with two levels of mixing. Ann. Appl. Prob. 7, 4689.
[4]Ball, F., Sirl, D. and Trapman, P. (2010). Analysis of a stochastic SIR epidemic on a random network incorporating household structure. Math. Biosci. 224, 5373.
[5]Barabási, A.-L. and Albert, R. (1999). Emergence of scaling in random networks. Science 286, 509512.
[6]Bartoszyński, R. (1972/73). On a certain model of an epidemic. Zastos. Mat. 13, 139151.
[7]Becker, N. G. and Dietz, K. (1995). The effect of household distribution on transmission and control of highly infectious diseases. Math. Biosci. 127, 207219.
[8]Bollobás, B., Janson, S. and Riordan, O. (2007). The phase transition in inhomogeneous random graphs. Random Structures Algorithms 31, 3122.
[9]Britton, T. (2010). Stochastic epidemic models: a survey. Math. Biosci. 225, 2435.
[10]Britton, T., Deijfen, M., Lagerås, A. N. and Lindholm, M. (2008). Epidemics on random graphs with tunable clustering. J. Appl. Prob. 45, 743756.
[11]Costello, E. al. (2009). Bacterial community variation in human body habitats across space and time. Science 326, 16941697.
[12]Daley, D. J. and Gani, J. (1999). Epidemic Modelling: An Introduction. Cambridge University Press.
[13]Dawson, D. A. and Gorostiza, L. G. (2007). Percolation in a hierarchical random graph. Commun. Stoch. Anal. 1, 2947.
[14]Dawson, D. A. and Gorostiza, L. G. (2013). Percolation in an ultrametric space. Electron J. Prob. 18, 26 pp.
[15]Deijfen, M., van der Hofstad, R. and Hooghiemstra, G. (2013). Scale-free percolation. Ann. Inst. H. Poincaré Prob. Statist. 49, 817838.
[16]Eriksen, K. A. and Hörnquist, M. (2001). Scale-free growing networks imply linear preferential attachment.Phys. Rev. E 65, 017102.
[17]Flaxman, A. D., Frieze, A. M. and Vera, J. (2007). A geometric preferential attachment model of networks. II. In Algorithms and Models for the Web-Graph (Lecture Notes Comput. Sci. 4863), Springer, Berlin, pp. 4155.
[18]Foley, R. and Gamble, C. (2009). The ecology of social transitions in human evolution. Phil. Trans. R. Soc. B 364, 32673279.
[19]Gandolfi, A. (2013). Percolation methods for SEIR epidemics on graphs. In Dynamic Models of Infectious Diseases, Vol. 2, Non Vector-Borne Diseases, eds V. S. H. Rao and R. Durvasula, Springer, New York, pp. 3158.
[20]Gandolfi, A., Keane, M. and de Valk, V. (1989). Extremal two-correlations of two-valued stationary one-dependent processes. Prob. Theory Relat. Fields 80, 475480.
[21]Gregory, S. (2010). Finding overlapping communities in networks by label propagation. New J. Phys. 12, 103018.
[22]Grimmett, G. (1999). Percolation, 2nd edn. Springer, Berlin.
[23]Jones, J. H. and Handcock, M. S. (2003). An assessment of preferential attachment as a mechanism for human sexual network formation. Proc. R. Soc. London B 270, 11231128.
[24]Jordan, J. (2010). Degree sequences of geometric preferential attachment graphs. Adv. Appl. Prob. 42, 319330.
[25]Kephart, J. O., Sorkin, G. B., Chess, D. M. and White, S. R. (1997). Fighting computer viruses. Scientific Amer. 277, 5661.
[26]Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proc. R. Soc. London A 115, 700721.
[27]Koval, V., Meester, R. and Trapman, P. (2012). Long-range percolation on the hierarchical lattice. Electron. J. Prob. 17, 21 pp.
[28]Kuulasmaa, K. and Zachary, S. (1984). On spatial general epidemics and bond percolation processes. J. Appl. Prob. 21, 911914.
[29]Meester, R. and Trapman, P. (2011). Bounding basic characteristics of spatial epidemics with a new percolation model. Adv. Appl. Prob. 43, 335347.
[30]Neal, P. (2003). SIR epidemics on a Bernoulli random graph. J. Appl. Prob. 40, 779782.
[31]Pastor-Satorras, R. and Vespignani, A. (2001). Epidemic spreading in scale-free networks. Phys. Rev. Lett. 86, 3200.
[32]Sander, L. M., Warren, C. P. and Sokolov, I. M. (2003). Epidemics, disorder, and percolation. Physica A 325, 18.
[33]Schulman, L. S. (1983). Long range percolation in one dimension. J. Phys. A 16, L639L641.
[34]Shearer, J. B. (1985). On a problem of Spencer. Combinatorica 5, 241245.
[35]Stokols, D. and Clitheroe, C. (2010). Environmental psychology. In Environmental Health: From Global to Local, ed. H. Frumkin, Jossey-Bass, San Francisco, CA, pp. 137171.
[36]Temmel, C. A. (2014). Shearer's measure and stochastic domination of product measures. J. Theoret. Prob. 27, 2240.
[37]Trapman, J. P. (2006). On stochastic models for the spread of infections. Doctoral thesis. Vrije Universiteit.
[38]Tropman, J. E., Erlich, J. L. and Rothman, J. (eds) (2001). Tactics and Techniques of Community Intervention, 4th edn. Peacock, Itasca, IL.
[39]Xu, X.-J., Zhang, X. and Mendes, J. F. F. (2007). Impacts of preference and geography on epidemic spreading. Phys. Rev. E 76, 056109.
[40]Yukich, J. E. (2006). Ultra-small scale-free geometric networks. J. Appl. Prob. 43, 665677.
[41]Zhou, T., Fu, Z. and Wang, B. (2006). Epidemic dynamics on complex networks. Progr. Natural Sci. 16, 452457.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed