[1]
Ambartzumian, R. V. (1990). Factorizational Calculus and Geometric Probability (Encyclopaedia Math. Appl. 33). Cambridge University Press.
[2]
Erdélyi, A., et al. (1953). Higher Transcendental Functions, Vol. II. McGraw-Hill, New York.
[3]
Gardner, R. J. (1995). Geometric Tomography (Encyclopaedia Math. Appl. 58). Cambridge University Press.
[4]
Goodey, P. and Howard, R. (1990). Processes of flats induced by higher dimensional processes I. Adv. Math.
80, 92–109.
[5]
Goodey, P. and Howard, R. (1990). Processes of flats induced by higher dimensional processes II. Contemp. Math.
113, 111–119.
[6]
Goodey, P. and Weil, W. (1992). Centrally symmetric convex bodies and the spherical Radon transform. J. Differential Geom.
35, 675–688.
[7]
Goodey, P. and Weil, W. (1993). Zonoids and generalisations. In Handbook of Convex Geometry, Vol. B, eds Gruber, P. M. and Wills, J. M.. Elsevier, Amsterdam, pp. 1297–1326.
[8]
Goodey, P., Howard, R. and Reeder, M. (1996). Processes of flats induced by higher dimensional processes III. Geometriae Dedicata
61, 257–269.
[9]
Groemer, H. (1993). Fourier series and spherical harmonics in convexity. In Handbook of Convex Geometry, Vol. B, eds Gruber, P. M. and Wills, J. M.. Elsevier, Amsterdam, pp. 1259–1295.
[10]
Groemer, H. (1996). Geometric Applications of Fourier Series and Spherical Harmonics. Cambridge University Press.
[11]
Helgason, S. (1959). Differential operators on homogeneous spaces. Acta Math.
102, 239–299.
[12]
Helgason, S. (1984). Groups and Geometric Analysis. Academic Press, Orlando, FL.
[13]
Helgason, S. (1990). The totally-geodesic Radon transform on constant curvature spaces. Contemp. Math.
113, 141–149.
[14]
Helgason, S. (1994). Geometric Analysis on Symmetric Spaces (Math. Surveys Monogr. 39). American Mathematical Society, Providence, RI.
[15]
Klingenberg, W. (1995). Riemannian Geometry. De Gruyter, Berlin.
[16]
Klingenberg, W. (1996). Grassmannian manifolds in geometry. Hermann Günther Graßmann (1809–1877): Visionary Mathematician, Scientist and Neohumanist Scholar.
Kluwer, Dordrecht, pp. 281–284.
[17]
Matheron, G. (1975). Random Sets and Integral Geometry. John Wiley, New York.
[18]
Mecke, J. (1981). Formulas for stationary planar fibre processes III—intersections with fibre systems. Math. Operationsforsch. Statist. Ser. Statist.
12, 201–210.
[19]
Mecke, J. (1981). Stereological formulas for manifold processes. Prob. Math. Statist.
2, 31–35.
[20]
Mecke, J. (1988). An extremal property of random flats. J. Microscopy
151, 205–209.
[21]
Mecke, J. and Nagel, W. (1980). Stationäre räumliche Faserprozesse und ihre Schnittzahlrosen. Elektron. Informationsverarb. Kyb.
16, 475–483.
[22]
Mecke, J. and Thomas, C. (1986). On an extreme value problem for flat processes. Commun. Statist. Stoch. Models
2, 273–280.
[23]
Mecke, J., Schneider, R., Stoyan, D. and Weil, W. (1990). Stochastische Geometrie. Birkhäuser, Basel.
[24]
Molchanov, I. and Stoyan, D. (1994). Directional analysis of fibre processes related to Boolean models. Metrica
41, 183–199.
[25]
Müller, C., (1966). Spherical Harmonics (Lecture Notes Math. 17). Springer, Berlin.
[26]
Pogorelov, A. V. (1979). Hilbert's Fourth Problem. Winston and Sons, Washington.
[27]
Rubin, B. (2000). Spherical Radon transforms and intertwining fractional integrals. Preprint, The Hebrew University of Jerusalem.
[28]
Rubin, B. (2000). Inversion formulas for the spherical Radon transform, the generalized cosine transform and intertwining fractional integrals. Preprint, The Hebrew University of Jerusalem.
[29]
Rubin, B. and Ryabogin, D. (2000). The k-dimensional Radon transform on the n-sphere and related wavelet transforms. Preprint, The Hebrew University of Jerusalem.
[30]
Schneider, R. (1970). Über eine Integralgleichung in der Theorie der konvexen Körper. Math. Nachr.
44, 55–75.
[31]
Spodarev, E. (2000). On the roses of intersections of stationary flat processes. Preprint Math/Inf/00/11, Friedrich-Schiller-Universität Jena.
[32]
Stoyan, D., Kendall, W. and Mecke, J. (1995). Stochastic Geometry and its Applications. John Wiley, New York.
[33]
Weil, W. (1976). Centrally symmetric convex bodies and distributions. Israel J. Math.
24, 352–367.