Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-19T02:27:26.463Z Has data issue: false hasContentIssue false

On the number of allelic types for samples taken from exchangeable coalescents with mutation

Published online by Cambridge University Press:  01 July 2016

F. Freund*
Affiliation:
Eberhard Karls Universität Tübingen
M. Möhle*
Affiliation:
Eberhard Karls Universität Tübingen
*
Postal address: Mathematisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Postal address: Mathematisches Institut, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 10, 72076 Tübingen, Germany.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let Kn denote the number of types of a sample of size n taken from an exchangeable coalescent process (Ξ-coalescent) with mutation. A distributional recursion for the sequence (Kn)n∈ℕ is derived. If the coalescent does not have proper frequencies, i.e. if the characterizing measure Ξ on the infinite simplex Δ does not have mass at 0 and satisfies ∫Δx∣Ξ(dx)/(x,x)<∞, where ∣x∣:=∑i=1xi and (x,x)≔∑i=1xi2 for x=(x1,x2,…)∈Δ, then Kn/n converges weakly as n→∞ to a limiting variable K that is characterized by an exponential integral of the subordinator associated with the coalescent process. For so-called simple measures Ξ satisfying ∫ΔΞ(d x)/(x,x)<∞, we characterize the distribution of K via a fixed-point equation.

Type
General Applied Probability
Copyright
Copyright © Applied Probability Trust 2009 

References

Basdevant, A.-L. and Goldschmidt, C. (2008). Asymptotics of the allele frequency spectrum associated with the Bolthausen–Sznitman coalescent. Electron. J. Prob. 13, 486512.Google Scholar
Berestycki, J., Berestycki, N. and Schweinsberg, J. (2007). Beta-coalescents and continuous stable random trees. Ann. Prob. 35, 18351887.CrossRefGoogle Scholar
Berestycki, J., Berestycki, N. and Schweinsberg, J. (2008). Small-time behavior of beta coalescents. Ann. Inst. H. Poincaré Prob. Statist. 44, 214238.Google Scholar
Bertoin, J. and Le Gall, J.-F. (2003). Stochastic flows associated to coalescent processes. Prob. Theory Relat. Fields 126, 261288.CrossRefGoogle Scholar
Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle's probability cascades and an abstract cavity method. Commun. Math. Phys. 197, 247276.Google Scholar
Caliebe, A., Neininger, R., Krawczak, M. and Rösler, U. (2007). On the length distribution of external branches in coalescence trees: genetic diversity within species. Theoret. Pop. Biol. 72, 245252.Google Scholar
Carmona, P., Petit, F. and Yor, M. (1997). On the distribution and asymptotic results for exponential integrals of Lévy processes. In Exponential Functionals and Principal Values Related to Brownian Motion, ed. Yor, M., Biblioteca de la Revista Matematica Iberoamericana, Madrid, pp. 73121.Google Scholar
Delmas, J.-F., Dhersin, J.-S. and Siri-Jegousse, A. (2008). Asymptotic results on the length of coalescent trees. Ann. Appl. Prob. 18, 9971025.Google Scholar
Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2007). Asymptotic results concerning the total branch length of the Bolthausen–Sznitman coalescent. Stoch. Process. Appl. 117, 14041421.Google Scholar
Drmota, M., Iksanov, A., Möhle, M. and Rösler, U. (2009). A limiting distribution for the number of cuts needed to isolate the root of a random recursive tree. Random Structures Algorithms 34, 319336.Google Scholar
Ewens, W. J. (1972). The sampling theory of selectively neutral alleles. Theoret. Pop. Biol. 3, 87112.Google Scholar
Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and the external branch length of the Bolthausen–Sznitman coalescent. Markov Process. Relat. Fields 15, 387416.Google Scholar
Gnedin, A. V. (2004). The Bernoulli sieve. Bernoulli 10, 7996.CrossRefGoogle Scholar
Gnedin, A. and Yakubovich, Y. (2007). On the number of collisions in Λ-coalescents. Electron. J. Prob. 12, 15471567.Google Scholar
Iksanov, A. and Möhle, M. (2007). A probabilistic proof of a weak limit law for the number of cuts needed to isolate the root of a random recursive tree. Electron. Commun. Prob. 12, 2835.Google Scholar
Iksanov, A. and Möhle, M. (2008). On the number of Jumps of random walks with a barrier. Adv. Appl. Prob. 40, 206228.Google Scholar
Iksanov, A., Marynych, A. and Möhle, M. (2009). On the number of collisions in beta(2,b)-coalescents. Bernoulli 15, 829845.Google Scholar
Kingman, J. F. C. (1982). On the genealogy of large populations. In Essays in Statistical Science (J. Appl. Prob. Spec. Vol. 19A), eds Gani, J. and Hannan, E. J., Applied Probability Trust, Sheffield, pp. 2743.Google Scholar
Möhle, M. (2005). Coalescent theory – simultaneous multiple collisions and sampling distributions. Oberwolfach Reports 40, 22792282.Google Scholar
Möhle, M. (2006). On sampling distributions for coalescent processes with simultaneous multiple collisions. Bernoulli 12, 3553.Google Scholar
Möhle, M. (2006). On the number of segregating sites for populations with large family sizes. Adv. Appl. Prob. 38, 750767.Google Scholar
Möhle, M. and Sagitov, S. (2001). A classification of coalescent processes for haploid exchangeable population models. Ann. Prob. 29, 15471562.Google Scholar
Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27, 18701902.CrossRefGoogle Scholar
Sagitov, S. (2003). Convergence to the coalescent with simultaneous multiple mergers. J. Appl. Prob. 40, 839854.Google Scholar
Schweinsberg, J. (2000). A necessary and sufficient condition for the Λ-coalescent to come down from infinity. Electron. Commun. Prob. 5, 111.Google Scholar
Schweinsberg, J. (2000). Coalescents with simultaneous multiple collisions. Electron. J. Prob. 5, 50 pp.Google Scholar
Vervaat, W. (1979). On a stochastic difference equation and a representation of nonnegative infinitely divisible random variables. Adv. Appl. Prob. 11, 750783.Google Scholar