Skip to main content Accessibility help
×
Home

A limit theorem for statistics of spatial data

  • Adrian Baddeley (a1)

Abstract

A large class of statistics of planar and spatial data is closely connected with empirical distributions, which estimate ‘ergodic’ distributions of stationary random sets. The main result is a functional limit theorem concerning the deviation of the empirical distribution from the ‘true’ one. Examples in mathematical morphology are given.

Copyright

Corresponding author

Postal address: Statistical Laboratory, 16 Mill Lane, Cambridge CB2 1SB, U.K.

References

Hide All
1. Billingsley, P. (1968) Convergence of Probability Measures. Wiley, New York.
2. Cowan, R. (1978) The use of the ergodic theorems in random geometry. Suppl. Adv. Appl. Prob. 10, 4757.
3. Deo, C. M. (1975) A functional central limit theorem for stationary random fields. Ann. Prob. 3, 708715.
4. Mardia, K. V. (1972) Statistics of Directional Data. Academic Press, New York.
5. Matheron, G. (1975) Random Sets and Integral Geometry. Wiley, New York.
6. Miles, R. E. (1961) Random Polytopes. , University of Cambridge.
7. Miles, R. E. (1971) Poisson flats in Euclidean spaces, II. Adv. Appl. Prob. 3, 143.
8. Miles, R. E. (1973) The various aggregates of random polygons determined by random lines in a plane. Adv. Math. 10, 256290.
9. Ripley, B. D. (1975) Modelling spatial patterns. J. R. Statist. Soc. B 39, 172212.
10. Sen, P. K. (1971) A note on weak convergence of empirical processes for sequences of ϕ-mixing random variables. Ann. Math. Statist. 42, 21312133.
11. Serra, J. (1969) Introduction à la Morphologie Mathématique. No3 des Cahiers du Centre de Morphologie Mathématique de Fontainebleau.

Keywords

A limit theorem for statistics of spatial data

  • Adrian Baddeley (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed