Skip to main content Accessibility help

Contact and chord length distribution of a stationary Voronoi tessellation

  • Lothar Heinrich (a1)


We give formulae for different types of contact distribution functions for stationary (not necessarily Poisson) Voronoi tessellations in ℝ d in terms of the Palm void probabilities of the generating point process. Moreover, using the well-known relationship between the linear contact distribution and the chord length distribution we derive a closed form expression for the mean chord length in terms of the two-point Palm distribution and the pair correlation function of the generating point process. The results obtained are specified for Voronoi tessellations generated by Poisson cluster and Gibbsian processes, respectively.


Corresponding author

Postal address: Institute of Mathematics, University of Augsburg, Universtätsstr. 14, D-86135 Augsburg, Germany. Email address:


Hide All
[1] Ambartzumian, R. B. (1975). Homogeneous and isotropic random point fields in the plane (in Russian). Math. Nachr. 70, 365385.
[2] Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes. Springer, New York.
[3] Gilbert, E. N. (1962). Random subdivisions of space into crystals. Ann. Math. Statist. 33, 958972.
[4] Hahn, U. and Lorz, U. (1994). Stereological analysis of the spatial Poisson–Voronoi tessellation. J. Microscopy 175, 176185.
[5] Hanisch, K.-H. (1982). On inversion formulae for n-fold Palm distributions of point processes in LCS-spaces. Math. Nachr. 106, 171179.
[6] Hansen, M. B., Gill, R. D. and Baddeley, A. (1994). Some regularity properties for first contact distributions. Unpublished.
[7] Heinrich, L. (1988). Asymptotic behaviour of an empirical nearest-neighbour distance function for stationary Poisson cluster processes. Math. Nachr. 136, 131148.
[8] Heinrich, L. (1993). Asymptotic properties of minimum contrast estimators for parameters of Boolean models. Metrika 31, 349360.
[9] Heinrich, L. (1994). Normal approximation for some mean-value estimates of absolutely regular tessellations. Math. Meth. Statist. 3, 124.
[10] Heinrich, L. and Muche, L. (1994). On the pair correlation function of the point process of nodes in a Voronoi tessellation. Preprint 94-07. TU Bergakademie Freiberg, Fak. für Mathematik und Informatik, pp. 130.
[11] Heinrich, L. and Schüle, E. (1995). Generation of the typical cell of a non-Poissonian Johnson–Mehl tessellation. Commun. Statist.–Stoch. Models 11, 541560.
[12] Heinrich, L. and Stoyan, D. (1984). On generalized Palm–Khinchin formulae (in Russian). Izvest. Acad. Sci. Armenian SSR, Ser. Mat. 19, 280287.
[13] Kallenberg, O. (1988). Random Measures. Academic Press, London.
[14] Last, G. and Schassberger, R. (1996). On the spherical contact distribution of stationary random set. Preprint 96-06, TU Braunschweig, Institut für Mathematik, pp. 118.
[15] Matthes, K., Kerstan, J. and Mecke, J. (1978). Infinitely Divisible Point Processes. Wiley, Chichester.
[16] Miles, R. E. (1970). On the homogeneous planar Poisson process. Math. Biosci. 6, 85127.
[17] Miles, R. E. (1984). Sectional Voronoi tessellations. Revista de la Unión Matemática Argentina 29, 310327.
[18] Miles, R.E. and Maillardet, R.J. (1982). The basic structures of Voronoi and generalized Voronoi polygons. In Essays in Statistical Science (Special Volume J. Appl. Prob. 19A), ed. Gani, J. and Hannan, E. J.. Applied Probability Trust, Sheffield, pp. 97111.
[19] Møller, J., (1989). Random tessellations in Rd . Adv. Appl. Prob. 21, 3773.
[20] Møller, J., (1994). Lectures on Random Voronoi Tessellations. Lecture Notes in Statistics 87, Springer, New York.
[21] Muche, L. and Stoyan, D. (1992). Contact and chord length distributions of the Poisson–Voronoi tessellation. J. Appl. Prob. 29, 467471.
[22] Okabe, A., Boots, B. and Sugihara, K. (1992). Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, Chichester.
[23] Stoyan, D., Kendall, W. S. and Mecke, J. (1987). Stochastic Geometry and Its Applications. Akademie-Verlag, Berlin.


MSC classification

Related content

Powered by UNSILO

Contact and chord length distribution of a stationary Voronoi tessellation

  • Lothar Heinrich (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.