Skip to main content Accessibility help

Comparison of time-inhomogeneous Markov processes

  • Ludger Rüschendorf (a1), Alexander Schnurr (a2) and Viktor Wolf (a1)


Comparison results are given for time-inhomogeneous Markov processes with respect to function classes with induced stochastic orderings. The main result states the comparison of two processes, provided that the comparability of their infinitesimal generators as well as an invariance property of one process is assumed. The corresponding proof is based on a representation result for the solutions of inhomogeneous evolution problems in Banach spaces, which extends previously known results from the literature. Based on this representation, an ordering result for Markov processes induced by bounded and unbounded function classes is established. We give various applications to time-inhomogeneous diffusions, to processes with independent increments, and to Lévy-driven diffusion processes.


Corresponding author

* Postal address: Department of Mathematical Stochastics , University of Freiburg, Eckerstraße 1, 79104 Freiburg, Germany.
** Postal address: Department of Mathematics, Siegen University, Walter-Flex-Straße 3, 57068 Siegen, Germany. Email address:


Hide All
Bassan, B. and Scarsini, M. (1991). Convex orderings for stochastic processes. Comment. Math. Univ. Carolin. 32, 115118.
Bäuerle, N., Blatter, A. and Müller, A. (2008). Dependence properties and comparison results for Lévy processes. Math. Meth. Operat. Res. 67, 161186.
Bellamy, N. and Jeanblanc, M. (2000). Incompleteness of markets driven by a mixed diffusion. Finance Stoch. 4, 209222.
Bergenthum, J. and Rüschendorf, L. (2006). Comparison of option prices in semimartigale models. Finance Stoch. 10, 222249.
Bergenthum, J. and Rüschendorf, L. (2007a). Comparison of semimartingales and Lévy processes. Ann. Prob. 35, 228254.
Bergenthum, J. and Rüschendorf, L. (2007b). Convex ordering criteria for Lévy processes. Adv. Data Anal. Classif. 1, 143173.
Böttcher, B. (2008). Construction of time-inhomogeneous Markov processes via evolution equations using pseudo-differential operators. J. London Math. Soc. (2) 78, 605621.
Chen, M.-F. (2004). From Markov Chains to Non-Equilibrium Particle Systems, 2nd edn. World Scientific, River Edge, NJ.
Chen, M. F. and Wang, F. Y. (1993). On order-preservation and positive correlations for multidimensional diffusion processes. Prob. Theory Relat. Fields 95, 421428.
Courrège, P. (1966). Sur la forme intégro-différentielle des opérateurs de C k dans C satisfaisant au principe du maximum. Théorie Potentiel 10, 138.
Cox, T. J., Fleischmann, K. and Greven, A. (1996). Comparison of interacting diffusions and an application to their ergodic theory. Prob. Theory Relat. Fields 105, 513528.
Daduna, H. and Szekli, R. (2006). Dependence ordering for Markov processes on partially ordered spaces. J. Appl. Prob. 43, 793814.
Dynkin, E. B. (1965). Markov Processes, Vol. I. Springer, Berlin.
El Karoui, N., Jeanblanc-Picqué, M. and Shreve, S. E. (1998). Robustness of the Black and Scholes formula. Math. Finance 8, 93126.
Engel, K.-J.and Nagel, R. (2000). One-Parameter Semigroups for Linear Evolution Equations (Graduate Texts Math.194). Springer, New York.
Eskin, G. I. (YEAR). Boundary Value Problems for Elliptic Pseudodifferential Equations (Transl. Math. Monogr.52). American Mathematical Society, Providence, RI.
Ethier, S. N. and Kurtz, T. G. (2005). Markov Processes: Characterization and Convergence. John Wiley, Hoboken, NJ.
Friedman, A. (2008). Partial Differential Equations. Dover, Mineola, NY.
Greven, A., Klenke, A. and Wakolbinger, A. (2002). Interacting diffusions in a random medium: comparison and long time behavior. Stoch. Process. Appl. 98, 2341.
Guendouzi, T. (2009). Directionally convex ordering in multidimensional jump diffusion models. Internat. J. Contemp. Math. Sci. 4, 969977.
Gulisashivili, A. and van Casteren, J. A. (2006). Non-Autonomous Kato Classes and Feynman–Kac Propagators. World Scientific, Hackensack, NJ.
Gushchin, A. A. and Mordecki, E. (2002). Bounds on option prices for semimartingale market models. Proc. Steklov Inst. Math. 2002, 73113.
Herbst, I. and Pitt, L. (1991). Diffusion equation techniques in stochastic monotonicity and positive correlations. Prob. Theory Relat. Fields 87, 275312.
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343.
Hobson, W. (1998). Volatility misspecification, option pricing and superreplication via coupling. Ann. Appl. Prob. 8, 193205.
Hoh, W. (1998). Pseudodifferential operators generating Markov processes. Habilitationsschrift, Universität Bielefeld.
Jacob, N. (2002). Pseudo-Differential Operators and Markov Processes, Vol. 1, Fourier Analysis and Semigroups. Imperial College Press, London.
Jacob, N. (2002). Pseudo-Differential Operators and Markov Processes, Vol. 2, Generators and Their Potential TheoryImperial College Press, London.
Massey, W. A. (1987). Stochastic orderings for Markov processes on partially ordered spaces. Math. Operat. Res. 12, 350367.
, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley, Chichester.
Pazy, A. (1983). Semigroups of Linear Operators and Applications to Partial Differential Equations (Appl. Math. Sci. 44). Springer, New York.
Poulsen, R., Schenk-Hoppé, K. R. and Ewald, C.-O. (2009). Risk minimization in stochastic volatility models: model risk and empirical performance. Quant. Finance 9, 693704.
Protter, P. (1977). Markov solutions of stochastic differential equations. Z. Wahrscheinlichkeitsth. 41, 3958.
Protter, P. (2005). Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin.
Rüschendorf, L. (2008). On a comparison result for Markov processes. J. Appl. Prob. 45, 279286.
Röschendorf, L. and Wolf, V. (2011). Comparison of Markov processes via infinitesimal generators. Statist. Decisions 28, 151168.
Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions (Camb. Studies Adv. Math. 68) Cambridge University Press.
Schilling, R. L. and Schnurr, A. (2010). The symbol associated with the solution of a stochastic differential equation. Electron. J. Prob. 15, 13691393.
Schnurr, J. A. (2009). The symbol of a Markov semimartingale. Doctoral Thesis, TU Dresden.
Shaked, M. and Shanthikumar, J. G. (1994). {Stochastic Orders and Their Applications. Academic Press, Boston, MA.
Tong, Y. L. (1980). Probability Inequalities in Mulitvariate Distributions. Academic press, New York.
Van Casteren, J. A. (2011). Markov Processes, Feller Semigroups and Evolution Equations. World Scientific, Hackensack, NJ.
Wang, J.-M. (2013). Stochastic comparison for Lévy-type processes. J. Theoret. Prob. 26, 9971019.


MSC classification

Related content

Powered by UNSILO

Comparison of time-inhomogeneous Markov processes

  • Ludger Rüschendorf (a1), Alexander Schnurr (a2) and Viktor Wolf (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.