Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-lzpzj Total loading time: 0.347 Render date: 2021-03-05T04:29:36.767Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Limit theorems for sequential MCMC methods

Published online by Cambridge University Press:  15 July 2020

Axel Finke
National University of Singapore
Arnaud Doucet
University of Oxford
Adam M. Johansen
University of Warwick & The Alan Turing Institute
E-mail address:


Both sequential Monte Carlo (SMC) methods (a.k.a. ‘particle filters’) and sequential Markov chain Monte Carlo (sequential MCMC) methods constitute classes of algorithms which can be used to approximate expectations with respect to (a sequence of) probability distributions and their normalising constants. While SMC methods sample particles conditionally independently at each time step, sequential MCMC methods sample particles according to a Markov chain Monte Carlo (MCMC) kernel. Introduced over twenty years ago in [6], sequential MCMC methods have attracted renewed interest recently as they empirically outperform SMC methods in some applications. We establish an $\mathbb{L}_r$ -inequality (which implies a strong law of large numbers) and a central limit theorem for sequential MCMC methods and provide conditions under which errors can be controlled uniformly in time. In the context of state-space models, we also provide conditions under which sequential MCMC methods can indeed outperform standard SMC methods in terms of asymptotic variance of the corresponding Monte Carlo estimators.

Original Article
© Applied Probability Trust 2020

Access options

Get access to the full version of this content by using one of the access options below.


Andrieu, C., Doucet, A. and Holenstein, R. (2010). Particle Markov chain Monte Carlo methods. J. R. Statist. Soc. B [Statist. Methodology] 72, 269342. With discussion.CrossRefGoogle Scholar
Andrieu, C., Jasra, A., Doucet, A. and Del Moral, P. (2011). On nonlinear Markov chain Monte Carlo. Bernoulli 17, 9871014.CrossRefGoogle Scholar
Andrieu, C. and Roberts, G. O. (2009). The pseudo-marginal approach for efficient Monte Carlo computations. Ann. Statist. 37, 697725.CrossRefGoogle Scholar
Baxendale, P. H. (2005). Renewal theory and computable convergence rates for geometrically ergodic Markov chains. Ann. Appl. Prob. 15, 700738.10.1214/105051604000000710CrossRefGoogle Scholar
Bercu, B., Del Moral, P. and Doucet, A. (2012). Fluctuations of interacting Markov chain Monte Carlo methods. Stoch. Proc. Appl. 122, 13041331.10.1016/ Scholar
Berzuini, C., Best, N. G., Gilks, W. R. and Larizza, C. (1997). Dynamic conditional independence models and Markov chain Monte Carlo methods. J. Amer. Statist. Soc. 92, 14031412.10.1080/01621459.1997.10473661CrossRefGoogle Scholar
Brockwell, A., Del Moral, P. and Doucet, A. (2010). Sequentially interacting Markov chain Monte Carlo methods. Ann. Statist 38, 33873411.10.1214/09-AOS747CrossRefGoogle Scholar
Carmi, A., Septier, F. and Godsill, S. J. (2012). The Gaussian mixture MCMC particle algorithm for dynamic cluster tracking. Automatica 48, 24542467.10.1016/j.automatica.2012.06.086CrossRefGoogle Scholar
Chopin, N. (2004). Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference. Ann. Statist. 32, 23852411.CrossRefGoogle Scholar
Del Moral, P. (2004). Feynman-Kac Formulae: Genealogical and Interacting Particle Systems with Applications. Springer, New York.10.1007/978-1-4684-9393-1CrossRefGoogle Scholar
Del Moral, P. and Doucet, A. (2010). Interacting Markov chain Monte Carlo methods for solving nonlinear measure-valued equations. Ann. Appl. Prob. 20, 593639.10.1214/09-AAP628CrossRefGoogle Scholar
Douc, R., Moulines, E. and Olsson, J. (2014). Long-term stability of sequential Monte Carlo methods under verifiable conditions. Ann. Appl. Prob. 24, 17671802.10.1214/13-AAP962CrossRefGoogle Scholar
Doucet, A., Pitt, M., Deligiannidis, G. and Kohn, R. (2015). Efficient implementation of Markov chain Monte Carlo when using an unbiased likelihood estimator. Biometrika 102, 295313.10.1093/biomet/asu075CrossRefGoogle Scholar
Finke, A., Doucet, A. and Johansen, A. M. (2016). On embedded hidden Markov models and particle Markov chain Monte Carlo methods. Preprint. Available at Scholar
Golightly, A. and Wilkinson, D. J. (2006). Bayesian sequential inference for nonlinear multivariate diffusions. Statist. Comput. 16, 323338.10.1007/s11222-006-9392-xCrossRefGoogle Scholar
Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proc. F, Radar and Signal Processing 140, 107113.10.1049/ip-f-2.1993.0015CrossRefGoogle Scholar
Johansen, A. M. and Doucet, A. (2007). Auxiliary variable sequential Monte Carlo methods. Technical report 07:09. University of Bristol, Statistics Groups.Google Scholar
Johansen, A. M. and Doucet, A. (2008). A note on auxiliary particle filters. Statist. Prob. Lett. 78, 14981504.10.1016/j.spl.2008.01.032CrossRefGoogle Scholar
Kallenberg, O. (2006). Foundations of Modern Probability. Springer, New York.Google Scholar
Künsch, H. R. (2005). Recursive Monte Carlo filters: algorithms and theoretical analysis. Ann. Statist. 33, 19832021.10.1214/009053605000000426CrossRefGoogle Scholar
Künsch, H. R. (2013). Particle filters. Bernoulli 19, 13911403.10.3150/12-BEJSP07CrossRefGoogle Scholar
Li, Y. and Coates, M. (2017). Sequential MCMC with invertible particle flow. In 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, pp. 38443848.CrossRefGoogle Scholar
Lin, M., Chen, R. and Liu, J. S. (2013). Lookahead strategies for sequential Monte Carlo. Statist. Sci. 28, 6994.10.1214/12-STS401CrossRefGoogle Scholar
Liu, J. S. (1991). Correlation structure and convergence rate of the Gibbs sampler. Doctoral Thesis, University of Chicago.Google Scholar
Liu, J. S. (1996). Metropolized independent sampling with comparisons to rejection sampling and importance sampling. Statist. Comput. 6, 113119.CrossRefGoogle Scholar
Mengersen, K. L. and Tweedie, R. L. (1996). Rates of convergence of the Hastings and Metropolis algorithms. Ann. Statist 24, 101121.Google Scholar
Mira, A. (1998). Ordering, slicing and splitting Monte Carlo Markov chains. Doctoral Thesis, University of Minnesota.Google Scholar
Pal, S. and Coates, M. (2018). Sequential MCMC with the discrete bouncy particle sampler. In IEEE Statistical Signal Processing Workshop (SSP), IEEE, pp. 663667.10.1109/SSP.2018.8450772CrossRefGoogle Scholar
Pitt, M. K. and Shephard, N. (1999). Filtering via simulation: Auxiliary particle filters. J. Amer. Statist. Soc. 94, 590599.10.1080/01621459.1999.10474153CrossRefGoogle Scholar
Rudolf, D. and Ullrich, M. (2013). Positivity of hit-and-run and related algorithms. Electron. Commun. Prob. 18, 18.10.1214/ECP.v18-2507CrossRefGoogle Scholar
Septier, F., Pang, S. K., Carmi, A. and Godsill, S. (2009). On MCMC-based particle methods for Bayesian filtering: application to multitarget tracking. In 3rd IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), IEEE, pp. 360363.10.1109/CAMSAP.2009.5413256CrossRefGoogle Scholar
Septier, F. and Peters, G. W. (2016). Langevin and Hamiltonian based sequential MCMC for efficient Bayesian filtering in high-dimensional spaces. IEEE J. Sel. Top. Signal Processing 10, 312327.10.1109/JSTSP.2015.2497211CrossRefGoogle Scholar
Shestopaloff, A. Y. and Neal, R. M. (2018). Sampling latent states for high-dimensional non-linear state space models with the embedded HMM method. Bayesian Anal. 13, 797822.10.1214/17-BA1077CrossRefGoogle Scholar
Shiryaev, A. N. (1995). Probability, 2nd edn. Springer, New York.Google Scholar
Snyder, C., Bengtsson, T. and Morzfeld, M. (2015). Performance bounds for particle filters using the optimal proposal. Mon. Weather Rev. 143, 47504761.CrossRefGoogle Scholar
Whiteley, N. (2013). Stability properties of some particle filters. Ann. Appl. Prob. 23, 25002537.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 14
Total number of PDF views: 63 *
View data table for this chart

* Views captured on Cambridge Core between 15th July 2020 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Limit theorems for sequential MCMC methods
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Limit theorems for sequential MCMC methods
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Limit theorems for sequential MCMC methods
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *