[1]Bochev, P., Dohrmann, C. R. and Gunzburger, M. D., A computational study of stabilized, low order C0 finite element approximations of Darcy equations, Comput. Mech., 38 (2006), pp. 323–333.

[2]Bochev, P., Dohrmann, C. R. and Gunzburger, M. D., Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44 (2006), pp. 82–101.

[3]Chen, Z., Finite Element Methods and Their Applications, Spring-Verlag, Heidelberg, 2005.

[4]Chen, Z., The control volume finite element methods and their applications to multiphase flow, Netw. Heterog. Media, 1 (2006), pp. 689–706.

[5]Ciarlet, P. G., The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1978.

[6]Chou, S. H. and Li, Q., Error estimates in *L*2, *H*1 and L∞ in co-volume methods for elliptic and parabolic problems: a unified approach, Math. Comput., 69 (2000), pp. 103–120.

[7]Chen, C. and Liu, W., Two-grid finite volume element methods for semilinear parabolic problems, Appl. Numer. Math., 60 (2010), pp. 10–18.

[8]Chen, Z., Li, R. and Zhou, A., A note on the optimal L2-estimate of finite volume element method, Adv. Comp. Math., 16 (2002), pp. 291–303.

[9]Cai, Z., Mandel, J. and Mc-ormick, S., The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal., 28 (1991), pp. 392–403.

[10]Ewing, R. E., Lin, T. and Lin, Y., On the accuracy of the finite volume element method based on piecewise linear polynomials, SIAM J. Numer. Anal., 39 (2002), pp. 1865–1888.

[11]Girault, V. and Lions, J. L., Two-grid finite-element schemes for the steady Navier-Stokes problem in polyhedra, Portug. Math., 58 (2001), pp. 25–57.

[12]Girault, V. and Raviart, P. A., Finite Element Method for Navier-Stokes Equations: Theory and Algorithms, Berlin, Heidelberg: Springer-Verlag, 1987.

[13]He, Y. and Li, J., A stabilized finite element method based on local polynomial pressure projection for the stationary Navier-Stokes equation, Appl. Numer. Math., 58 (2008), pp. 1503–1514.

[14]Heywood, J. G. and Rannacher, R., Finite element approximations of nonstationary Navier- Stokes problem, Part I: Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19 (1982), pp. 275–311.

[15]He, Y., Wang, A. and Mei, L., Stabilized finite-element method for the stationary Navier-Stokes equations, J. Eng. Math., 51 (2005), pp. 367–380.

[16]Huang, P., Zhang, T. and Ma, X., Superconvergence by L2-projection for a stabilized finite volume method for the stationary Navier-Stokes equations, Comput. Math. Appl., 62 (2011), pp. 4249–4257.

[17]Layton, W., A two-level discretization method for the Navier-Stokes equations, Comput. Math. Appl., 26 (1993), pp. 33–38.

[18]Li, J. and Chen, Z., A new stabilized finite volume method for stationary Stokes equations, Adv. Comput. Math., 30 (2009), pp. 141–152.

[19]Li, J. and Chen, Z., On the semi-discrete stabilized finite volume method for the transient Navier- Stokes equations, Adv. Comput. Math., 122 (2012), pp. 279–304.

[20]Li, J. and Chen, Z., Optimal *L*2, *H*1 and L∞ analysis of finite volume methods for the stationary Navier-Stokes equations with large data, Numerische Mathematik., 126 (2014), pp. 75–101.

[21]Li, J., Chen,, Z. and He, Y., A stabilized multi-level method for non-singular finite volume solutions of the stationary 3D Navier-Stokes equations, Numerische Mathematik., 122 (2012), pp. 279–304.

[22]Li, J. and He, Y., A new stabilized finite element method based on two local Gauss integration for the Stokes equations, J. Comput. Appl. Math., 214 (2008), pp. 58–65.

[23]Li, K. and Hou, Y., An AIM and one-step newton method for the Navier-Stokes equations, Comput. Methods Appl. Mech. Eng., 190 (2001), pp. 6141–6155.

[24]Li, J., He, Y. and Chen, Z., A new stabilized finite element method for the transient Navier-Stokes equations, Comput. Meth. Appl. Mech. Eng., 197 (2007), pp. 22–35.

[25]Li, J., He, Y. and Chen, Z., Performance of several stabilized finite element methods for the Stokes equations based on the lowest equal-order pairs, Comput., 86 (2009), pp. 37–51.

[26]Li, J., He, Y. and Xu, H., A multi-level stabilized finite element method for the stationary Navier- Stoke equations, Comput. Meth. Appl. Mech. Eng., 196 (2007), pp. 2852–2862.

[27]Layton, W. and Lenferink, W., Two-level Picard-defect corrections for the Navier-Stokes equations at high Reynolds number, Appl. Math. Comput., 69 (1995), pp. 263–274.

[28]Layton, W. and Lenferink, W., A multi-level mesh independence principle for the Navier-Stokes equations, SiAM J. Numer. Anal., 33 (1996), pp. 17–30.

[29]Layton, W., Lee, H. K. and Peterson, J., Numerical solution of the stationary Navier-Stokes equations using a multilevel finite lement method, SiAM J. Sci. Comput., 20 (1998), pp. 1–12.

[30]Li, J., Shen, L. and Chen, Z., Convergence and stability of a stabilized finite volume method for stationary Navier-Stokes equations, BiT Numer. Math., 50 (2010), pp. 823–842.

[31]Li, J., Wu, J., Chen, Z. and Wang, A., Superconvergence of stabilized low order finite volume approximation for the three-dimensional stationary Navier-Stokes equations, int. J. Numer. Anal., Model, 9 (2012), pp. 419–431.

[32]Li, R. and Zhu, P., Generalized difference methods for second order elliptic partial differential equations (I)-triangle grids, Numer. Math J. Chinese Universities, 2 (1982), pp. 140–152.

[33]Niemisto, A., FE-approximation of unconstrained optimal control like problems, University of Jyvaskyla, Report, 70 (1995).

[34]Temam, R., Navier-Stokes Equations, Theory and Numerical Analysis, Amsterdam, North-Holland, 1983.

[35]Xu, J., A novel two-grid method for semilinear elliptic equations, SiAM J. Sci. Comput., 15 (1994), pp. 231–237.

[36]Xu, J., Two-grid finite element discretization techniques for linear and nonlinear PDE, SiAM J. Numer. Anal., 33 (1996), pp. 1759–1777.

[37]Ye, X., On the relationship between finite volume and finite element methods applied to the Stokes equations, Numer. Methods Partial Differ. Equ., 5 (2001), pp. 440–453.