Skip to main content Accessibility help

Transition Flow with an Incompressible Lattice Boltzmann Method

  • J. R. Murdock (a1), J. C. Ickes (a1) and S. L. Yang (a1)


Direct numerical simulations of the transition process from steady laminar to chaotic flow are considered in this study with the relatively new incompressible lattice Boltzmann equation. Numerically, a multiple relaxation time fully incompressible lattice Boltzmann equation is implemented in a 2D driven cavity. Spatial discretization is 2nd-order accurate, and the Kolmogorov length scale estimation based on Reynolds number (Re) dictates grid resolution. Initial simulations show the method to be accurate for steady laminar flows, while higher Re simulations reveal periodic flow behavior consistent with an initial Hopf bifurcation at Re 7,988. Non-repeating flow behavior is observed in the phase space trajectories above Re 13,063, and is evidence of the transition to a chaotic flow regime. Finally, flows at Reynolds numbers above the chaotic transition point are simulated and found with statistical properties in good agreement with literature.


Corresponding author

*Corresponding author. Email: (J. R. Murdock), (J. C. Ickes), (S. L. Yang)


Hide All
[1] Bhatnagar, P. L., Gross, E. P. and Krook, M., A model for collision processes in gasses. I. Small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), pp. 511525.
[2] Bouzidi, M., D'Humieres, D., Lallemand, P. and Luo, L. S., Lattice Boltzmann equation on a two-dimensional rectangular grid, J. Comput. Phys., 172 (2001), pp. 704717.
[3] Bruneau, C. H. and Saad, M., The 2D lid-driven cavity problem revisited, Comput. Fluids, 35 (2006), pp. 326348.
[4] Burggraf, O. R., Analytical and numerical studies of the structure of steady separated flows, J. Fluid Mech., 24 (1966), pp. 113151.
[5] Cazemier, W., Verstappen, R. W. and Veldman, A. E., Proper orthogonal decomposition and low-dimensional models for driven cavity flows, Phys. Fluids, 10 (1998), pp. 16851699.
[6] Ghia, U., Ghia, K. N. and Shin, C. T., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), pp. 387411.
[7] Guo, Z., Shi, B. and Wang, N., Lattice BGK model for incompressible Navier-Stokes equation, J. Comput. Phys., 165 (2000), pp. 288306.
[8] He, X., Doolen, G. D. and Clark, T., Comparison of the lattice Boltzmann method and the artificial compressibility method for Navier-Stokes equations, J. Comput. Phys., 179 (2002), pp. 439451.
[9] Hou, S., Zou, Q., Chen, S., Doolen, G. and Cogley, A. C., Simulation of cavity flow by the lattice Boltzmann method, J. Comput. Phys., 118 (1995), pp. 329347.
[10] Lallemand, P. and Luo, L. S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61 (2000), 6546.
[11] Lammers, P., Beronov, K. N. and Volkert, R. et al., Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow, Comput. Fluids, 35 (2006), pp. 11371153.
[12] Li, J. and Wang, Z., An alternative scheme to calculate the strain rate tensor for the LES applications in LBM, Math. Problems Eng., (2010), 724578.
[13] Marchi, C. H., Suero, R. and Araki, L. K., The lid-driven cavity flow: Numerical solution with a 1024×1024 grid, J. Brazilian Society Mech. Sci. Eng., 31 (2009), pp. 186198.
[14] Marie, S., Ricot, D. and Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, J. Comput. Phys., 228 (2008), pp. 10561070.
[15] Martinez, D. O., Matthaeus, W. H., Chen, S. and Montgomery, D. C., Comparison of spectral method and lattice Boltzmann simulations of two-dimensional hydrodynamics, Phys. Fluids, 6 (2006), pp. 12851298.
[16] McNamara, G. R. and Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett., 61 (1988), 2332.
[17] Murdock, J. R. and Yang, S. L., Alternative and explicit derivation of the lattice Boltzmann equation for the unsteady incompressible Navier-Stokes equation, Int. J. Comput. Eng. Res., 6 (2016), pp. 4759.
[18] Peng, Y. F., Shiau, Y. H. and Hwang, R. R., Transition in a 2-D lid driven cavity flow, Comput. Fluids, 32 (2003), pp. 337352.
[19] Poliashenko, M. and Aidun, C. K., A direct method for computation of simple bifurcations, J. Comput. Phys., 121 (2006), pp. 246260.
[20] Shi, B., He, N. and Wang, N., A unified thermal lattice BGK model for Boussinesq equations, Prog. Comput. Fluid Dyn., 5 (2005).
[21] Wang, R. Z. and Fang, H. P., Test of the possible application of the half-way bounce-back boundary condition for lattice Boltzmann methods in complex geometry, Commun. Theor. Phys., 35 (2000), pp. 593596.
[22] Zhang, C., Cheng, Y., Huang, S. and Wu, J., Improving the stability of themultiple-relaxation-time lattice Boltzmann method by a viscosity counteracting approach, Adv. Appl. Math. Mech., 8 (2016), pp. 3751.


MSC classification

Transition Flow with an Incompressible Lattice Boltzmann Method

  • J. R. Murdock (a1), J. C. Ickes (a1) and S. L. Yang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed