[1]
Hartmann, D. L., Moy, L. A. and Fu, Q., Tropical convection and the energy balance at the top of the atmosphere, J. Clim., 14 (2011), pp. 4495–4511.

[2]
Marshall, J. and Schott, F., Open-ocean convection: observations, theory, and models, Rev. Geophys., 37 (1999), pp. 1–64.

[3]
Cardin, P. and Olson, P., Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core, Phys. Earth Planet. Inter., 82 (1994), pp. 235–259.

[4]
Lohse, D. and Xia, K. Q., Small-scale properties of turbulent Rayleigh-Bénard convection, Annu. Rev. Fluid. Mech., 42 (2010), pp. 335–364.

[5]
Chilla, F. and Schumacher, J., New perspectives in turbulent Rayleigh-Bénard convection, Eur. Phys. J. E, 35 (2012), pp. 58–82.

[6]
Ahlers, G., Grossmann, S. and Lohse, D., Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection, Rev. Mod. Phys., 81 (2009), pp. 503–537.

[7]
Bailon, J. C., Emran, M. S. and Schumacher, J., Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection, J. Fluid Mech., 655 (2010), pp. 152–173.

[8]
Biferale, L., A note on the fluctuations of dissipation scale in turbulence, Phys. Fluids, 20 (2008), pp. 031703–031709.

[9]
Chill, F. and Schumacher, J., New perspectives in turbulent Rayleigh-Bénard convection, Euro. J. Phys. E, 35 (2012), pp. 58–67.

[10]
Seiden, G., Pattern forming system in the presence of different symmetry-breaking mechanisms, Phys. Rev. Lett., 101 (2008), pp. 214503–214507.

[11]
Freund, G. and Pesch, W., Rayleigh-Bénard convection in the presence of spatial temperature modulations, J. Fluid. Mech., 673 (2011), pp. 318–348.

[12]
Weiss, S., Seiden, G. and Bodenschatz, E., Pattern formation in spatially forced thermal convection, New J. Phys., 14 (2011), pp. 053010–053019.

[13]
Ripesi, P., Biferale, L., Sbragaglia, M. and Wirth, A., Natural convection with mixed insulating and conducting boundary conditions: low- and high-Rayleigh-number regimes, J. Fluid. Mech., 742 (2014), pp. 636–663.

[14]
Biferake, L. and Procaccia, I., Anisotropy in turbulent flows and in turbulent transport, Phys. Rep., 2005, 414 (2005), pp. 143–164.

[15]
Chertkov, M., Phenomenology of Rayleigh-Taylor turbulence, Phys. Rev. Lett., 91 (2003), pp. 115001–115010.

[16]
Succi, S., The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Oxford University Press, 2005.

[17]
Chen, S. and Doolen, G., Lattice Boltzmann method for fluid flows, Annu. Rev. Fluid Mech., 30 (1998), pp. 329–345.

[18]
Aidun, C. K., Lattice-Boltzmann method for complex flows, Annu. Rev. Fluid. Mech., 42 (2010), pp. 439–472.

[19]
Qian, Y. H., D'Humieres, D. and Lallemand, P., Lattice BGK models for Navier-Stokes equation, Europhys. Lett., 17 (1992), pp. 479–484.

[20]
Inamuro, T., Yoshino, M., Inoue, H., Mizuno, R. and Ogino, F., A lattice Boltzmann method for a binary miscible fluid mixture and its application to a heat-transfer problem, J. Comput. Phys., 179 (2002), pp. 201–215.

[21]
Guo, Z. L., Shi, B. C., A coupled lattice BGK model for the Boussinesq equations, Int. J. Numer. Meth. Fluids, 39 (2002), pp. 325–342.

[22]
Azwadi, C. S. and Rosdzimin, A., Simulation of natural convection heat transfer in an enclosure using lattice Boltzmann method, J. Mekanikal., 27 (2008), pp. 42–50.

[23]
Peng, Y., Shu, C. and Chew, Y. T., Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, 68 (2003), pp. 026701–026708.

[24]
Shan, X., Simulation of RayleighBénard convection using a lattice Boltzmann method, Phys. Rev. E, 55 (1997), pp. 2780–2788.

[25]
He, X., Chen, S. and Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146 (1998), pp. 282–300.

[26]
Chen, S., Simulating compositional convection in the presence of rotation by lattice Boltzmann model, Int. J. Thermal Sci., 49 (2010). pp. 2093–2107.

[27]
Wei, Y. K., Wang, Z. D., Yang, J. F., Dou, H. S. and Qian, Y. H., A simple lattice Boltzmann model for turbulence Rayleigh-Bénard thermal convection, Comput. Fluids, 118 (2015), pp. 167–171.

[28]
Peng, Y., Shu, C. and Chew, Y. T., A Three-dimensional incompressible thermal lattice Boltzmann model and its application to simulate natural convection in a cubic cavity, J. Comput. Phys., 193 (2003), pp. 260–274.

[29]
Peng, Y., Shu, C. and Chew, Y. T., Three-dimensional lattice kinetic scheme and its application to simulate incompressible viscous thermal flows, Commun. Comput. Phys., 2 (2007), pp. 239–254.

[30]
Li, Q., Luo, K., He, Y. and Tao, W., Coupling lattice Boltzmann model for simulation of thermal flows on standard lattices, Phys. Rev. E, 85 (2012), pp. 016710–016717.

[31]
Karlin, I. V., Sichau, D. and Chikatamarla, S. S., Consistent two-population lattice Boltzmann model for thermal flows, Phys. Rev. E, 88 (2013), pp. 063310–063318.

[32]
Prasianakis, N. I., Chikatamarla, S. S., Karlin, I. V., Ansumali, S. and Boulouchos, K., Entropic lattice Boltzmannmethod for simulation of thermal flows, Math. Comput. Simul., 72 (2006), pp. 179–183.

[33]
Frapolli, N., Chikatamarla, S. and Karlin, I., Multispeed entropic lattice Boltzmann model for thermal flows, Phys. Rev. E, 90 (2014), pp. 043306–043315.

[34]
Hamlington, P. E., Krasnov, D., Boeck, T. and Schumacher, J., Local dissipation scales and energy dissipation rate moments in channel flow, J. Fluid. Mech., 701 (2012), pp. 419–429.

[35]
Zhou, Q., Temporal evolution and scaling of mixing in two-dimensional Rayleigh-Taylor turbulence, Phys. Fluilds, 25 (2013), pp. 08510701–08510717.

[36]
Clever, R. M. and Busse, F. H., Transition to time-dependent convection, J. Fluid Mech., 65 (1974), pp. 625–645.