[1]May, G., Srinivasan, B. and Jameson, A., An improved gas-kinetic BGK finite-volume method for three-dimensional transonic flow, J. Comput. Phys., 220 (2007), pp. 856–878.

[2]Pullin, D., Direct simulation methods for compressible inviscid ideal-gas flow, J. Comput. Phys., 34 (1980), pp. 231–244.

[3]Mandal, J. and Deshpande, S., Kinetic flux vector splitting for Euler equations, Comput. Fluids, 23 (1994), pp. 447–478.

[4]Chou, S. Y. and Baganoff, D., Kinetic flux-vector splitting for the Navier-Stokes equations, J. Comput. Phys., 130 (1997), pp. 217–230.

[5]Yang, L., Shu, C. and Wu, J., A simple distribution function-based gas-kinetic scheme for simulation of viscous incompressible and compressible flows, J. Comput. Phys., 274 (2014), pp. 611–632.

[6]Xu, K., *Gas-kinetic schemes for the unsteady compressible flow simulations*, VKI for Fluid Dynamics Lecture Series, (1998), 1998-03.

[7]Xu, K., Numerical Hydrodynamics from Gas-Kinetic Theory, Ph.D. Thesis, Columbia University, New York, 1993.

[8]Prendergast, K. H. and Xu, K., Numerical hydrodynamics from gas-kinetic theory, J. Comput. Phys., 109 (1993), pp. 53–66.

[9]Chae, D., Kim, C. and Rho, O.-H., Development of an improved gas-kinetic BGK scheme for inviscid and viscous flows, J. Comput. Phys., 158 (2000), pp. 1–27.

[10]Xu, K., A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys., 171 (2001), pp. 289–335.

[11]Bhatnagar, P. L., Gross, E. P. and Krook, M., A model for collision processes in gases I. small amplitude processes in charged and neutral one-component systems, Phys. Review, 94 (1954), 511.

[12]Su, M., Xu, K. and Ghidaoui, M., Low-speed flow simulation by the gas-kinetic scheme, J. Comput. Phys., 150 (1999), pp. 17–39.

[13]Jiang, S. and Ni, G., A γ-model BGK scheme for compressible multifluids, Int. J. Numer. Methods Fluids, 46 (2004), pp. 163–182.

[14]Li, Z.-H. and Zhang, H.-X., Study on gas kinetic unified algorithm for flows from rarefied transition to continuum, J. Comput. Phys., 193 (2004), pp. 708–738.

[15]Xu, K., Mao, M. and Tang, L., A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow, J. Comput. Phys., 203 (2005), pp. 405–421.

[16]Guo, Z., Liu, H., Luo, L.-S. and Xu, K., A comparative study of the LBE and GKS methods for 2D near incompressible laminar flows, J. Comput. Phys., 227 (2008), pp. 4955–4976.

[17]Jiang, J. and Qian, Y., Implicit gas-kinetic BGK scheme with multigrid for 3D stationary transonic high-Reynolds number flows, Comput. Fluids, 66 (2012), pp. 21–28.

[18]Yang, L., Shu, C., Wu, J., Zhao, N. and Lu, Z., Circular function-based gas-kinetic scheme for simulation of inviscid compressible flows, J. Comput. Phys., 255 (2013), pp. 540–557.

[19]Li, W., Kaneda, M. and Suga, K., An implicit gas kinetic BGK scheme for high temperature equilibrium gas flows on unstructured meshes, Comput. Fluids, 93 (2014), pp. 100–106.

[20]Liu, S., Yu, P., Xu, K. and Zhong, C., Unified gas-kinetic scheme for diatomic molecular simulations in all flow regimes, J. Comput. Phys., 259 (2014), pp. 96–113.

[21]Venkatakrishnan, V., Convergence to steady state solutions of the Euler equations on unstructured grids with limiters, J. Comput. Phys., 118 (1995), pp. 120–130.

[22]Van Leer, B., Towards the ultimate conservative difference scheme IV. A new approach to numerical convection, J. Comput. Phys., 23 (1977), pp. 276–299.

[23]Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction, Springer Science & Business Media, 2009.

[24]Mittal, Sanjay and Tezduyar, T., A unified finite element formulation for compressible and incompressible flows using augmented conservation variables, Comput. Methods Appl. Mech. Eng., 161 (1998), pp. 229–243.

[25]Woodward, P. and Colella, P., The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys., 54 (1984), pp. 115–173.

[26]Cook, P. H., McDonald, M. A. and Firmin, M. C. P., *Aerofoil RAE2822-pressure distributions, and boundary layer and wake measurements*, AGARD Report AR 138, (1979).

[27]Lee, C. B. and Wang, S., Study of the shock motion in a hypersonic shock system/turbulent boundary layer interaction, Exp. Fluids, 19 (1995), pp. 143–149.

[28]Lee, C. B., Hong, Z. X., Kachanov, Y. S., Borodulin, V. I. and Gaponenko, V. V., A study in transitional flat plate boundary layers: measurement and visualization, Exp. Fluids, 28 (2000), pp. 243–251.

[29]Lee, C. B. and Wu, J. Z., Transition in wall-bounded flows, Appl. Mech. Rev., 61 (2008), 0802.

[30]Kim, K., Kim, C., Rho, O. H. and Hong, S., *Cure for shock instability: development of an improved Roe scheme*, AIAA Paper, 548 (2002), 2002.

[31]Wieting, A. and Holden, M., *Experimental study of shock wave interference heating on a cylinder leading edge*, AIAA Paper, (1988).

[32]Yoon, S. and Jameson, A., Lower-upper symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations, AIAA J., 26 (1988), pp. 1025–1026.