[1]Peskin, C. S., Numerical analysis of blood flow in the heart, J. Comput. Phys., 25 (1977), pp. 220–252.

[2]Goldstein, D., Hadler, R. and Sirovich, L., Modeling a no-slip flow boundary with an external force field, J. Comput. Phys., 105 (1993), pp. 354–366.

[3]Lai, M. and Peskin, C. S., An immersed boundary method with formal second-order accuracy and reduced numerical viscosity, J. Comput. Phys., 160 (2000), pp. 705–719.

[4]Linnick, M. N. and Fasel, H. F., A high-order immersed interface method for simulating unsteady incompressible flows on irregular domains, J. Comput. Phys., 204 (2005), pp. 157–192.

[5]Lima, E., Silva, A. L. F., Silverira-Neto, A. and Damasceno, J. J. R., Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method, J. Comput. Phys., 189 (2003), pp. 351–370.

[6]Feng, Z. G. and Michaelides, E. E., Proteus: a direct forcing method in the simulations of particulate flow, J. Comput. Phys., 202 (2005), pp. 20–51.

[7]Chen, S. and Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid. Mech., 30 (1996), pp. 329–364.

[8]Niu, X. D., Shu, C., Chew, Y. T. and Peng, Y., A momentum exchange-based immersed boundary-lattice Boltzmann method for simulating incompressible viscous flows, Phys. Lett. A., 354 (2006), pp. 173–182.

[9]Peng, Y., Shu, C., Chew, Y. T., Niu, X. D. and Lu, X. Y., Application of multi-block approach in the immersed boundary-lattice Boltzmann method for viscous fluid flows, J. Comput. Phys., 218 (2006), pp. 460–478.

[10]Shu, C., Liu, N. Y. and Chew, Y. T., A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder, J. Comput. Phys., 226 (2007), pp. 1607–1622.

[11]Wu, J. and Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys., 228 (2009), pp. 1963–1979.

[12]Shu, C. and Wu, W. L., Adaptive mesh refinement-enhanced local DFD method and its application to solve Navier-Stokes equations, Int. J. Numer. Meth. Fluids., 51 (2006), pp. 897–912.

[13]Shu, C. and Fan, L. F., A new discretization method and its application to solve incompressible Navier-Stokes equation, Comput. Mech., 27 (2001), pp. 292–301.

[14]Shu, C. and Wu, Y. L., Domain-free discretization method for doubly connected domain and its application to simulate natural convection in eccentric annuli, Comput. Methods. Appl. Mech. Eng., 191 (2002), pp. 1827–1841.

[15]Wu, Y. L. and Shu, C., Application of local DFD method to simulate unsteady flows around an oscillating circular cylinder, Int. J. Numer. Meth. Fluids., 58 (11) (2008), pp. 1223–1236.

[16]Kim, J. and Moin, P., Application of fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), pp. 308–323.

[17]Ding, H. and Shu, C., A stencil adaptive algorithm for finite difference solution of incompressible viscous flows, J. Comput. Phys., 214 (2006), pp. 397–420.

[18]Wu, J. and Shu, C., Implicit velocity correction-based immersed boundary-lattice Boltzmann method and its applications, J. Comput. Phys., 228 (2009), pp. 1963–1979.

[19]Dennis, S. C. R. and Chang, G. Z., Numerical solutions for steady flow past a circular cylinder at Reynolds number up to 100, J. Fluid. Mech., 42 (1970), pp. 471–489.

[20]He, X. Y. and Doolen, G. D., Lattice Boltzmann method on a curvilinear coordinate system: vortex shedding behind a circular cylinder, Phys. Rev., 56 (1997), pp. 434–440.

[21]Calhoun, D., A Cartesian grid method for solving the two-dimensional stream function-vorticity equatins in irregular regions, J. Comput. Phys., 176 (2002), pp. 231–275.

[22]Tuann, S. Y. and Olson, M. D., Numerical studies of the flow around a circular cylinder by a finite element method, Comput. Fluid., 6 (1978), pp. 219–240.

[23]Ding, H., Shu, C. and Cai, Q. D., Applications of stencil-adaptive finite difference method to incompressible viscous flows with curved boundary, Comput. Fluids., 36 (2007), pp. 786–793.

[24]Braza, M., Chassaing, P. and Ha Minh, H., Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder, Fluid. Mech., 165 (1986), pp. 79–130.

[25]Liu, C., Zheng, X. and Sung, C. H., Preconditioned multigrid metrhods for unsteady incompressible flows, J. Comput. Phys., 139 (1998), pp. 39–57.

[26]Ding, H., Shu, C., Yeo, K. S. and Xu, D., Simulation of incompressible viscous flows past circular cylinder by hybrid FD scheme and meshless least square-based finite difference method, Comput. Methods. Appl. Mech. Eng., 193 (2004), pp. 727–744.