[1]
Chen, S., Chen, H., Martnez, D. and Matthaeus, W., Lattice Boltzmann model for simulation of magnetohydrodynamics, Phys. Rev. Lett., 67 (1991), 3776.

[2]
Qian, Y., D’Humiéres, D. and Lallemand, P., Lattice BGK models for Navier-Stokes equation, EPL (Europhysics Letters), 17 (1992), 479.

[3]
D’Humiéres, D., Multiplerelaxationtime lattice Boltzmann models in three dimensions, Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 360 (2002), pp. 437–451.

[4]
Mei, R., Luo, L.-S. and Shyy, W., An accurate curved boundary treatment in the lattice Boltzmann method, J. Comput. Phys., 155 (1999), pp. 307–330.

[5]
Guo, Z., Zheng, C. and Shi, B., An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. Fluids, 14 (2002), pp. 2007–2010.

[6]
Lallemand, P. and Luo, L.-S., Theory of the lattice Boltzmann method: Dispersion, dissipation, isotropy, Galilean invariance, and stability, Phys. Rev. E, 61 (2000), 6546.

[7]
He, X. and Doolen, G., Lattice Boltzmann method on curvilinear coordinates system: flow around a circular cylinder, J. Comput. Phys., 134 (1997), pp. 306–315.

[8]
Chen, H., Chen, S. and Matthaeus, W. H., Recovery of the Navier-Stokes equations using a lattice-gas Boltzmann method, Phys. Rev. A, 45 (1992), R5339.

[9]
Chen, S., Martinez, D. and Mei, R., On boundary conditions in lattice Boltzmann methods, Phys. Fluids, 8 (1996), pp. 2527–2536.

[10]
Guo, Z., Shi, B. and Wang, N., Lattice BGK model for incompressible NavierStokes equation, J. Comput. Phys., 165 (2000), pp. 288–306.

[11]
Shu, C., Niu, X. and Chew, Y., Taylor series expansion and least squares-based lattice Boltzmann method: three-dimensional formulation and its applications, Int. J. Modern Phys. C, 14 (2003), pp. 925–944.

[12]
Feng, Z.-G. and Michaelides, E. E., The immersed boundary-lattice Boltzmann method for solving fluidparticles interaction problems, J. Comput. Phys., 195 (2004), pp. 602–628.

[13]
Zhang, Y.-H., Gu, X.-J., Barber, R. W. and Emerson, D. R., Capturing Knudsen layer phenomena using a lattice Boltzmann model, Phys. Rev. E, 74 (2006), 046704.

[14]
Shan, X., Yuan, X.-F. and Chen, H., Kinetic theory representation of hydrodynamics: a way beyond the NavierStokes equation, J. Fluid Mech., 550 (2006), pp. 413–441.

[15]
Lim, C., Shu, C., Niu, X. and Chew, Y., Application of lattice Boltzmann method to simulate microchannel flows, Phys. Fluids, 14 (2002), pp. 2299–2308.

[16]
He, X., Chen, S. and Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146 (1998), pp. 282–300.

[17]
Peng, Y., Shu, C. and Chew, Y., Simplified thermal lattice Boltzmann model for incompressible thermal flows, Phys. Rev. E, 68 (2003), 026701.

[18]
Tang, G., Tao, W. and He, Y., Lattice Boltzmann method for gaseous microflows using kinetic theory boundary conditions, Phys. Fluids, 17 (2005), 058101.

[19]
He, X., Chen, S. and Zhang, R., A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of RayleighTaylor instability, J. Comput. Phys., 152 (1999), pp. 642–663.

[20]
Shan, X. and Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E, 47 (1993), 1815.

[21]
Inamuro, T., Ogata, T., Tajima, S. and Konishi, N., A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. Comput. Phys., 198 (2004), pp. 628–644.

[22]
Shan, X., Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method, Phys. Rev. E, 55 (1997), 2780.

[23]
Versteeg, H. K. and Malalasekera, W., An Introduction to Computational Fluid Dynamics: the Finite Volume Method, Pearson Education, 2007.

[24]
Liszka, T. and Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. Struct., 11 (1980), pp. 83–95.

[25]
Lee, C. B., New features of CS solitons and the formation of vortices, Phys. Lett. A, 247 (1998), pp. 397–402.

[26]
Lee, C., Possible universal transitional scenario in a flat plate boundary layer: Measurement and visualization, Phys. Rev. E, 62 (2000), 3659.

[27]
Lee, C. and Li, R., *Dominant structure for turbulent production in a transitional boundary layer*, J. Turbulence, (2007), N55.

[28]
Aidun, C. K. and Clausen, J. R., Lattice-Boltzmann method for complex flows, Ann. Rev. Fluid Mech., 42 (2010), pp. 439–472.

[29]
Chen, S. and Doolen, G. D., Lattice Boltzmann method for fluid flows, Ann. Rev. Fluid Mech., 30 (1998), pp. 329–364.

[30]
He, X. and Luo, L.-S., Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E, 56 (1997), 6811.

[31]
McNamara, G. R. and Zanetti, G., Use of the Boltzmann equation to simulate lattice-gas automata, Phys. Rev. Lett., 61 (1988), 2332.

[32]
Shu, C., Wang, Y., Teo, C. and Wu, J., Development of lattice Boltzmann flux solver for simulation of incompressible flows, Adv. Appl. Math. Mech., 6 (2014), pp. 436–460.

[33]
Wang, Y., Shu, C. and Teo, C., Development of LBGK and incompressible LBGK-based lattice Boltzmann flux solvers for simulation of incompressible flows, Int. J. Numer. Methods Fluids, 75 (2014), pp. 344–364.

[34]
Wang, Y., Shu, C. and Teo, C., Thermal lattice Boltzmann flux solver and its application for simulation of incompressible thermal flows, Comput. Fluids, 94 (2014) pp. 98–111.

[35]
Wang, Y., Shu, C., Huang, H. and Teo, C., Multiphase lattice Boltzmann flux solver for incompressible multiphase flows with large density ratio, J. Comput. Phys., 280 (2015), pp. 404–423.

[36]
Wang, Y., Yang, L. and Shu, C., From lattice Boltzmann method to lattice Boltzmann flux solver, Entropy, 17 (2015), pp. 7713–7735.

[37]
White, F. M., Fluid Mechanics, McGraw-Hill, New York, 2003.

[38]
Benzi, R., Succi, S. and Vergassola, M., The lattice Boltzmann equation: theory and applications, Phys. Reports, 222 (1992), pp. 145–197.

[39]
Frisch, U., D’Humiéres, D., Hasslacher, B., Lallemand, P., Pomeau, Y. and Rivet, J.-P., Lattice gas hydrodynamics in two and three dimensions, Complex Systems, 1 (1987), pp. 649–707.

[40]
Inamuro, T., Yoshino, M. and Ogino, F., Accuracy of the lattice Boltzmann method for small Knudsen number with finite Reynolds number, Phys. Fluids, 9 (1997), pp. 3535–3542.

[41]
Guo, Z. and Shu, C., Lattice Boltzmann Method and Its Applications in Engineering, World Scientific, 2013.

[42]
Kim, J. and Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, J. Comput. Phys., 59 (1985), pp. 308–323.

[43]
Anderson, J. D. and Wendt, J., Computational Fluid Dynamics, Springer, 1995.

[44]
Sterling, J. D., Chen, S., Stability analysis of lattice Boltzmann methods, J. Comput. Phys., 123 (1996), pp. 196–206.

[45]
Niu, X., Shu, C., Chew, Y. and Wang, T., Investigation of stability and hydrodynamics of different lattice Boltzmann models, J. Stat. Phys., 117 (2004), pp. 665–680.

[46]
Ghia, U., Ghia, K. N. and Shin, C., High-Re solutions for incompressible flow using the Navier-Stokes equations and a multigrid method, J. Comput. Phys., 48 (1982), 387–411.

[47]
Mei, R., Luo, L.-S., Lallemand, P. and D’Humiéres, D., Consistent initial conditions for lattice Boltzmann simulations, Comput. Fluids, 35 (2006), pp. 855–862.

[48]
Mei, R. and Shyy, W., On the finite difference-based lattice Boltzmann method in curvilinear coordinates, J. Comput. Phys., 143 (1998), pp. 426–448.

[49]
Guo, Z., Zheng, C. and Shi, B., Discrete lattice effects on the forcing term in the lattice Boltzmann method, Phys. Rev. E, 65 (2002), 046308.