Skip to main content Accessibility help

A Priori Error Estimates of Finite Element Methods for Linear Parabolic Integro-Differential Optimal Control Problems

  • Wanfang Shen (a1), Liang Ge (a2), Danping Yang (a3) and Wenbin Liu (a4)


In this paper, we study the mathematical formulation for an optimal control problem governed by a linear parabolic integro-differential equation and present the optimality conditions. We then set up its weak formulation and the finite element approximation scheme. Based on these we derive the a priori error estimates for its finite element approximation both in H1 and L2 norms. Furthermore some numerical tests are presented to verify the theoretical results.


Corresponding author

Corresponding author. Email:


Hide All
[1]Alt, W., On the approximation of infinite optimisation problems with an application to optimal control problems, Appl. Math. Optim., (1984), pp. 1527.
[2]Cannon, J. R. and Lin, Y., A priori L2 error estimates for Galerkin method for nonlinear parabolic integro-differential equations, Manuscript, 1987.
[3]Falk, F. S., Approximation of a class of optimal control problems with order of convergence estimates, J. Math. Anal. Appl., 44 (1973), pp. 2847.
[4]French, D. A. and King, J. T., Approximation of an elliptic control problem by the finite element method, Numer. Funct. Anal. Appl., 12 (1991), pp. 299315.
[5]Friedman, A. and Shinbrot, M., Volterra integral equations in banach space, Trans. Amer. Math. Soc., 126 (1967), pp. 131179.
[6]Grimmer, R. C. and Pritchard, A. J., Analytic resolvent operators for integral equations in Banach space, J. Differential Equations, 50 (1983), pp. 234259.
[7]Heard, M. L., An abstract parabolic Volterra integro-differential equation, SIAM J. Math. Anal., 13 (1982), pp. 81105.
[8]Hermann, B. and Yan, N. N., Finite element methods for optimal control problems governed by integral equations and integro-differrential equations, Numerische Mathematik, 101 (2005), pp. 127.
[9]Kufner, A., John, O. and Fucik, S., Function Spaces, Nordhoff, Leiden, The Netherlands, 1977.
[10]Lions, J. L., Optimal Control of Systems Governed by Partial Differential Equations, Springer-Verlag, Berlin, 1971.
[11]Lions, J. L. and Magenes, E., Non Homogeneous Boundary Value Problems and Applications, Grandlehre B, 181, Springer-Verlag, 1972.
[12]Lunardi, A. and Sinestrari, E., C-regularity of non-autonomous linear integro-differential equations of parabolic type, J. Differential Equations, 63 (1986), pp. 88116.
[13]Lorenzi, A. and Sinestrari, E., An inverse problem in the theory of materials with memory, Nonlinear Anal. Theory Methods Appl., 12 (1988), pp. 13171335.
[14]Leroux, M.-N. and Thomée, V., Numerical solution of semilinear integro-differential equations of parabolic type with nonsmooth data, SIAM J. Numer. Anal., 26 (1989), pp. 12911300.
[15]Lin, Y., Thomée, V. and Wahlbin, L., Ritz-volterra projections to finite element spaces and applications to integro-differential and related equations, SIAM J. Numer. Anal., 28 (1991), pp. 10471070.
[16]Li, R., On multi-mesh h-adaptive algorithm, J. Sci. Comput., 24 (2005), pp. 321341.
[17]Malanowski, K., Convergence of approximations vs. regularity of solutions for convex, control constrained, Optimal Control Systems Appl. Math. Optim., 8 (1982).
[18]Neittaanmaki, P., Tiba, D. and Dekker, M., Optimal Control of Nonlinear Parabolic Systems, Theory, Algorithms and Applications, New York, 1994.
[19]Pironneau, O., Optimal Shape Design for Elliptic Systems, Springer-Verlag, Berlin, 1984.
[20]Renardy, M., Hrusa, W. J. and Nohel, J. A., Mathematical problems in viscoelasticity, pitman monographs and surveys in pure and applied mathematics, Longman Scientific and Technical, Harlow, Essex, 35 (1987).
[21]Sloan, I. H. and Thomee, V., Time discretization of an integro-differential equation of parabolic type, SIAM J. Numer. Anal., 23 (1986), pp. 10521061.
[22]Tiba, D., Lectures on the Optimal Control of Elliptic Equations, University of Jyvaskyla Press, Finland, 1995.
[23]Tiba, D., Optimal control of nonsmooth distributed parameter systems, Lecture Notes Math., 1459 (1990), Springer-Verlag, Berlin.
[24]Tiba, D. and Troltzsch, F., Error estimates for the discretization of state constrained convex control problems, Numer. Funct. Anal. Optim., 17 (1996), pp. 10051028.
[25]Thomee, V. and Zhang, N.-Y., Error estimates for semidiscrete finite element methods for parabolic integro-differential equations, Math. Comput., 53 (1989), pp. 121139.
[26]Verfurth, R., A Review of a Posteriori Error Estimation and Adaptive Mesh Refinement, Wiley-Teubner, London, UK, 1996.
[27]Yanik, E. G. and Fairweather, G., Finite element methods for parabolic and hyperbolic partial integro-differential equations, Nonlinear Anal., 12 (1988), pp. 785809.


Related content

Powered by UNSILO

A Priori Error Estimates of Finite Element Methods for Linear Parabolic Integro-Differential Optimal Control Problems

  • Wanfang Shen (a1), Liang Ge (a2), Danping Yang (a3) and Wenbin Liu (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.