[1]He, S. and Singh, R., Estimation of amplitude and frequency dependent parameters of hydraulic engine mount given limited dynamic stiffness measurement, Noise. Control. Eng. J., 53(2) (2005), pp. 271–285.

[2]Wang, Q. Y. and Maslen, E. H., Identification of frequency dependent parameters in a flexible rotor system, ASME J. Eng. Gas. Turb. Power., 128(3) (2006), pp. 670–676.

[3]Webster, A. and Semke, W., Frequency dependent viscoelastic structural elements for passive broad-band vibration control, J. Vibr. Control., 10(6) (2004), pp. 881–895.

[4]Dai, X. J., Lin, J. H., Chen, H. R. and Williams, F. W., Random vibration of composite structures with attached frequency dependent damping layer, Composites. B. Eng., 39(2) (2008), pp. 405–413.

[5]Conza, N. E. and Rixen, D. J., Influence of frequency-dependent properties on system identification: simulation study on a human levis model, J. Sound. Vibr., 302(4-5) (2007), pp. 699–715.

[6]Mondal, M. and Massoud, Y., Accurate analytical modeling of frequency dependent loop self-inductance, J. Circuit. Sys. Comput., 17(1) (2008), pp. 77–93.

[7]Bandran, E. and Ulloa, S. E., Frequency-dependent magnetotransport and particle dynamics in magnetic modulation systems, Phys. Rev. B., 59(4) (1999), pp. 2824–2832.

[8]Wilkinson, J. H., The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, England, 1972.

[9]Rutishauser, , The Jacobi method for real symmetric matrices, Numer. Math., 9 (1966), pp. 1–10.

[10]Golub, G. H., H., G. and van Loan, C. F., Matrix Computations, Johns Hopkins University Press, Baltimore, Maryland, 1996.

[11]Moler, C. B. and Stewart, G. W., An algorithm for generalized matrix eigenvalue problems, SIAM J. Numer. Anal., 10(2) (1973), pp. 241–256.

[12]Ipsen, I. C. F., Computing an eigenvector with inverse iteration, SIAM Rev., 39 (1997), pp. 254–291.

[13]Lanczos, C., An iteration method for the solution of the eigenvalue problem of linear differential and integral operators, J. Res. National. Bureau. Standards., 45 (1950), pp. 255–282.

[14]Arnodi, W. E., The principle of minimized iterations in the solution of the matrix eigenvalue problems, Quarter. Appl. Math., 9 (1951), pp. 17–29.

[15]Jiaxian, X., An improved method for partial eigensolution of large structures, Comput. Struct., 32 (1989), pp. 1055–1060.

[16]Bathe, K. J. and Ramaswamy, S., An accelerated subspace iteration method, Comput. Methods. Appl. Mech. Eng., 23(3) (1980), pp. 313–331.

[17]Bathe, K. J. and Wilson, E. L., Large eigenvalue problems in dynamic analysis, ASCE, Eng. Mech. Div., 98 (1972), pp. 1471–1485.

[18]Bathe, K. J. and Wilson, E. L., Solution methods for eigenvalue problems in structural mechanics, Int. J. Numer. Methods. Eng., 6 (1973), pp. 213–266.

[19]Borri, M. and Mantegazza, P., Efficient solution of quadratic eigenproblems arising in dynamic analysis of structures, Comput. Methods. Appl. Mech. Eng., 12 (1977), pp. 19–31.

[20]Chen, H. C. and Taylor, R. L., Solution of eigenproblems for damped structural systems by Lanczos algorithm, Comput. Struct., 30 (1988), pp. 151–161.

[21]Saad, Y., Variations of Arnoldi’s method for computing eigenelements of large unsymmetric matrices, Linear. Algebra. Appl., 34 (1980), pp. 269–295.

[22]Zheng, T. S., Liu, W. M. and Cai, Z. B., A general inverse iteration method for solution of quadratic eigenvalue problems in structural dynamic analysis, Comput. Struct., 33(5) (1989), pp. 1139–1143.

[23]Ewins, D. J., Modal Testing: Theory, Practice and Applications, Research Studies Press, 2000.

[24]Bathe, K. J., Finite Element Procedures, Prentice Hall, 1996.

[25]Lin, R. M. and Lim, M. K., Relationship between improved inverse eigensensitivity and FRF sensitivity methods for analytical model updating, ASME J. Vibr. Acoust., 119(3) (1997), pp. 354–363.

[26]Dailey, R. L., Eigenvector derivatives with repeated eigenvalues, AIAA J., 27(4) (1989), pp. 486–491.