Skip to main content Accessibility help
×
Home

Moving Finite Element Simulations for Reaction-Diffusion Systems

  • Guanghui Hu (a1), Zhonghua Qiao (a2) and Tao Tang (a3)

Abstract

This work is concerned with the numerical simulations for two reaction-diffusion systems, i.e., the Brusselator model and the Gray-Scott model. The numerical algorithm is based upon a moving finite element method which helps to resolve large solution gradients. High quality meshes are obtained for both the spot replication and the moving wave along boundaries by using proper monitor functions. Unlike [33], this work finds out the importance of the boundary grid redistribution which is particularly important for a class of problems for the Brusselator model. Several ways for verifying the quality of the numerical solutions are also proposed, which may be of important use for comparisons.

Copyright

Corresponding author

URL:myweb.polyu.edu.hk/∼zqiao/, Email: ghhu@math.msu.edu
Corresponding author. Email: zqiao@inet.polyu.edu.hk

References

Hide All
[1]Van Dam, A. and Zegeling, P. A., Balanced monitoring of flow phenomena in moving mesh methods, Commun. Comput. Phys., 7 (2010), pp. 138170.
[2]Doelman, A., Kaper, T. J. and Zegeling, P. A., Pattern formation in the one-dimensional Gray-Scott model, Nonlinearity., 10 (1997), pp. 523563.
[3]Gierer, A. and Meinhardt, H., A theory of biological pattern formation, Kybernetik., 12 (1972), pp. 3039.
[4]Granero, M. I., Porati, A. and Zanacca, D., A bifurcation analysis of pattern formation in a diffusion governed morphogenetic field, J. Math. Biol., 4 (1977), pp. 2127.
[5]Gray, P. and Scott, S. K., Sustained oscillations and other exotic patterns of behavior in isothermal reaction, J. Phys. Chem., 59 (1985), pp. 2232.
[6]Hairer, E., Norsett, S. P. and Wanner, G., Solving Ordinary Differential Equations, I. Nonstiff Problems, Springer, Berlin, 1987.
[7]Harrison, L. and Holloway, D., Order and localization in reaction-diffusion patter, Phys. A., 222 (1995), pp. 210233.
[8]Holloway, D., Reaction-Diffusion Theory of Localized Structures with Applications to Vertebrate Organogenesis, Ph. D. thesis, Department of Chemistry, University of British Columbia, Vancouver, Canada, 1995.
[9]Hunding, A., Morphogen prepatterns during mitosis and cytokinesis in flattened cells: three-dimensional Turing structures of reaction-diffusion systems in cylindrical coordinates, J. Theoret. Biol., 114 (1985), pp. 571588.
[10]Hundsdorfer, W. H. and Verwer, J. G., Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations, Springer, 2003.
[11]Iron, D. and Ward, M. J., The dynamics of multispike solutions to the one-dimensional Gierer-Meinhardt model, SIAM J. Appl. Math., 62 (2002), pp. 19241951.
[12]Iron, D., Ward, M. J. and Wei, J., The stability of spike solutions to the one-dimensional Gierer-Meinhardt model, Phys. D., 150 (2001), pp. 2562.
[13]Li, R. and Liu, W.,
[14]Li, R., Tang, T. and Zhang, P. W., Moving mesh methods in multiple dimensions based on harmonic maps, J. Comput. Phys., 170 (2001), pp. 562588.
[15]Li, R., Tang, T. and Zhang, P. W., A moving mesh finite element algorithm for singular problems in two and three space dimensions, J. Comput. Phys., 177 (2002), pp. 365393.
[16]Madzvamuse, A., Time-stepping schemes for moving grid finite elements applied to reaction-diffusion systems on fixed and growing domains, J. Comput. Phys., 214 (2006), pp. 239263.
[17]Madzvamuse, A. and Maini, P. K., Velocity-induced numerical solutions of reaction-diffusion systems on fixed and growing domains, J. Comput. Phys., 225 (2007), pp. 100119.
[18]Madzvamuse, A., Maini, P. K. and Wathen, A. J., A moving grid finite element method applied to a model biological pattern generator, J. Comput. Phys., 190 (2003), pp. 478500.
[19]Madzvamuse, A., Maini, P. K. and Wathen, A. J., A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, J. Sci. Comput., 24 (2005), pp. 247262.
[20]Meinhardt, H., Models of Biological Pattern Formation, Academic Press, London, 1982.
[21]Meinhardt, H., The Algorithmic Beauty of Sea Shells, Springer-Verlag, Berlin, 1995.
[22]Nicolis, G. and Prigogine, I., Self-Organization in Non-Equilibrium System: From Dissipative Structures to Order Through Fluctuations, Wiley, New York, 1977.
[23]Qiao, Z., Numerical investigations of the dynamical behaviors and instabilities for the Gierer-Meinhardt system, Commun. Comput. Phys., 3 (2008), pp. 406426.
[24]Qiao, Z., Zhang, Z. and Tang, T., An adaptive time-stepping strategy for the molecular beam epitaxy models, SIAM J. Sci. Comput., 33 (2011), pp. 13951414.
[25]Schnakenberg, J., Simple chemical reaction systems with limit cycle behavior, J. Theoret. Biol., 81 (1979), pp. 389400.
[26]Sun, W., Tang, T., Ward, M. J. and Wei, J., Numerical challenges for resolving spike dynamics for two reaction-diffusion systems, Studies. Appl. Math., 111 (2003), pp. 4184.
[27]Sun, W., Ward, M. J. and Russell, R., The slow dynamics of two-spike solutions for the Gray-Scott and Gierer-Meinhardt systems: competition and oscillatory instabilities, SIAM J. Appl. Dyn. Syst., 4 (2005), pp. 904953.
[28]Turing, A., The chemical basis of morphogenesis, Phil. Trans. R. Soc. B., 237 (1952), pp. 32– 72.
[29]Ward, M. J., Asymptotic methods for reaction-diffusion systems: past and present, Bull. Math. Biol., 68 (2006), pp. 11511167.
[30]Ward, M. J., Mcinereny, D. and Houston, P., The dynamics and pinning o f a spike for a reaction-diffusion system, SIAM J. Appl. Math., 62 (2002), pp. 12971328.
[31]Wei, J. and Winter, M., On the two-dimensional Gierer-Meinhardt system with strong coupling, SIAM J. Math. Anal., 30 (1999), pp. 12411263.
[32]Wei, J. and Winter, M., Spikes for the two-dimensional Gierer-Meinhardt system: the weak coupling case, J. Nonlinear. Sci., 11 (2001), pp. 415458.
[33]Zegeling, P. A. and Kok, H. P., Adaptive moving mesh computations for reaction-diffusion systems, J. Comput. Appl. Math., 168 (2004), pp. 519528.
[34]Zhang, Z. and Qiao, Z., An adaptive time-stepping strategy for the Cahn-Hilliard equation, Commun. Comput. Phys., 11 (2011), pp. 12611278.
[35]Baines, M. J., Hubbard, M. E. and Jimack, P. K., Velocity-Based Moving Mesh Methods for Nonlinear Partial Differential Equations, Commun. Comput. Phys., vol., 10 (2011), pp. 509576.
[36]Zhang, Y., Wang, H. and Tang, T., Simulating two-phase viscoelastic flows using moving finite element methods, Commun. Comput. Phys., 7 (2010), pp. 333349.

Keywords

Related content

Powered by UNSILO

Moving Finite Element Simulations for Reaction-Diffusion Systems

  • Guanghui Hu (a1), Zhonghua Qiao (a2) and Tao Tang (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.