[1]
Li, X. L., Fu, D. X. and Ma, Y. W., Optimized group velocity control scheme and DNS of decaying compressible turbulence of relative high turbulent Mach number, Int. J. Numer. Meth. Fluids, 48 (2005), pp. 835–852.

[2]
Qiu, J. X., Khoo, B. C. and Shu, C. W., A numerical study for the performance of the Runge-Kutta discontinuous Galerkin method based on different numerical fluxes, J. Comput. Phys., 212 (2006), pp. 540–565.

[3]
Zheng, H. W., Shu, C. and Chew, Y. T., An object-oriented and quadrilateral-mesh based solution adaptive algorithm for compressible multi-fluid flows, J. Comput. Phys., 227 (2008), pp. 6895–6921.

[4]
Yang, L. M., Shu, C., Wu, J., Zhao, N. and Lu, Z. L., Circular function-based gas-kinetic scheme for simulation of inviscid compressible flows, J. Comput. Phys., 255 (2013), pp. 540–557.

[5]
Chen, S. Z., Xu, K., Lee, C. B. and Cai, Q. D., A unified gas kinetic scheme with moving mesh and velocity space adaptation, J. Comput. Phys., 231 (2012), pp. 6643–6664.

[6]
Main, A. and Farhat, C., A second-order time-accurate implicit finite volume method with exact two-phase Riemann problems for compressible multi-phase fluid and fluid-structure problems, J. Comput. Phys., 258 (2014), pp. 613–633.

[7]
McDonald, P. W., *The computation of transonic flow through tow-dimensional gas turbine cascades*, ASME Paper 71-GT-89, 1971.

[8]
Patankar, S. V. and Spalding, D. B., A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows, Int. J. Heat Mass Transfer, 15 (1972), pp. 1787–1806.

[9]
Chorin, A. J., A numerical method for solving incompressible viscous flow problems, J. Comput. Phys., 2 (1967), pp. 12–26.

[10]
Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), pp. 357–372.

[11]
Van Leer, B., Flux vector splitting for the Euler equations, Lecture Notes in Physics, 170 (1982), pp. 507–512.

[12]
Liou, M. S. and Steffen, C. J., A new flux splitting scheme, J. Comput. Phys., 107 (1993), pp. 23–39.

[13]
Kitamura, K., Shima, E. and Roe, P. L., Evaluation of Euler fluxes for hypersonic heating computations, AIAA J., 48 (2010), pp. 763–776.

[14]
Van Leer, B., Thomas, J. L., Roe, P. L. and Newsome, R. W., *A comparison of numerical flux formulas for the Euler and Navier-Stokes equations*, AIAA Paper, 87-1104, 1987.

[15]
Chou, S. Y. and Baganoff, D., Kinetic flux-vector splitting for the Navier-Stokes equations, J. Comput. Phys., 130 (1997), pp. 217–230.

[16]
Chae, D., Kim, C. and Rho, O. H., Development of an improved gas-kinetic BGK scheme for inviscid and viscous flows, J. Comput. Phys., 158 (2000), pp. 1–27.

[17]
Xu, K., A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method, J. Comput. Phys., 171 (2001), pp. 289–335.

[18]
Xu, K., *Gas-kinetic schemes for unsteady compressible flow simulations*, VKI for Fluid Dynamics Lecture Series, 1998-03 (1998).

[19]
Benzi, R., Succi, S. and Vergassola, M., *The lattice Boltzmann equation: theory and application*, Physics Report, 1992.

[20]
Guo, Z. L. and Shu, C., Lattice Boltzmann Method and Its Applications in Engineering, World Scientific Publishing, 2013.

[21]
Kataoka, T. and Tsutahara, M., Lattice Boltzmann method for the compressible Euler equations, Phys. Rev. E., 69 (2004), 056702.

[22]
Qu, K., Shu, C. and Chew, Y. T., Alternative method to construct equilibrium distribution functions in lattice-Boltzmann method simulation of inviscid compressible flows at high Mach number, Phys. Rev. E., 75 (2007), 036706.

[23]
Li, Q., He, Y. L., Wang, Y. and Tang, G. H., Three-dimensional non-free-parameter lattice-Boltzmann model and its application to inviscid compressible flows, Phys. Lett. A, 373 (2009), pp. 2101–2108.

[24]
Zhong, C. W., Li, K., Sun, J. H., Zhou, C. S. and Xie, J. F., Compressible flow simulation around airfoil based on lattice Boltzmann method, Transactions of Nanjing University of Aeronautics and Astronautics, 26 (2009), pp. 206–211.

[25]
Xi, H. W., Peng, G. W. and Chou, S. H., Finite-volume lattice Boltzmann method, Phys. Rev. E., 59 (1999), pp. 6202–6205.

[26]
Ubertini, S., Bella, G. and Succi, S., Lattice Boltzmann method on unstructured grids: further developments, Phys. Rev. E., 68 (2003), 016701.

[27]
Stiebler, M., Tölke, J. and Krafczyk, M., An upwind discretization scheme for the finite volume lattice Boltzmann method, Comput. Fluids, 35 (2006), pp. 814–819.

[28]
Ji, C. Z., Shu, C. and Zhao, N., A lattice Boltzmann method-based flux solver and its application to solve shock tube problem, Mod. Phys. Lett. B., 23 (2009), pp. 313–316.

[29]
Yang, L. M., Shu, C. and Wu, J., Development and comparative studies of three non-free parameter lattice Boltzmann models for simulation of compressible flows, Adv. Appl. Math. Mech., 4 (2012), pp. 454–472.

[30]
Yang, L. M., Shu, C. and Wu, J., A moment conservation-based non-free parameter compressible lattice Boltzmann model and its application for flux evaluation at cell interface, Comput. Fluids, 79 (2013), pp. 190–199.

[31]
Shu, C., Wang, Y., Yang, L. M. and Wu, J., Lattice Boltzmann flux solver: an efficient approach for numerical simulation of fluid flows, Transactions of Nanjing University of Aeronautics and Astronautics, 31 (2014), pp. 1–15.

[32]
Bhatnagar, P. L., Gross, E. P. and Krook, M., A model for collision processes in gases. I: small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), pp. 511–525.

[33]
Xu, K. and He, X. Y., Lattice Boltzmann method and gas-kinetic BGK scheme in the low-Mach number viscous flow simulations, J. Comput. Phys., 190 (2003), pp. 100–117.

[34]
Barth, T. J. and Jespersen, D. C., *The design and application of upwind schemes on unstructured meshes*, AIAA Paper, 89-0366, 1989.

[35]
Blazek, J., Computation Fluid Dynamics: Principle and Application, Elsevier, 2001.

[36]
Swanson, R. C. and Radespiel, R., Cell centered and cell vertex multigrid schemes for the Navier-Stokes equations, AIAA J., 29 (1991), pp. 697–703.

[37]
Venkatakrishnan, V., Convergence to steady-state solutions of the Euler equations on unstructured grids with limiters, J. Comput. Phys., 118 (1995), pp. 120–130.

[38]
Bristeau, M. O., Glowinski, R., Periaux, J. and Viviand, H., Numerical simulation of compressible Navier-Stokes flows, Vieweg and Sonh Braunschweig, Wiesbaden, (1987).

[39]
Jawahar, P. and Kamath, H., A high-resolution procedure for Euler and Navier-Stokes computations on unstructured grids, J. Comput. Phys., 164 (2000), pp. 165–203.

[40]
Van Leer, B., Toward the ultimate conservative difference scheme iv, a new approach to numerical convection, J. Comput. Phys., 23 (1977), pp. 276–299.

[41]
Yoon, S. and Jameson, A., Lower-upper Symmetric-Gauss-Seidel method for the Euler and Navier-Stokes equations, AIAA J., 26 (1988), pp. 1025–1026.

[42]
Wieting, A. R., *Experimental study of shock wave interface heating on a cylindrical leading edge*, NASA TM-100484, 1987.

[43]
Xu, K., Mao, M. L. and Tang, L., A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow, J. Comput. Phys., 203 (2005), pp. 405–421.