[1]Abeynaike, A., Sederman, A. J., Khan, Y., Johns, M. L., Davidson, J. F. and Mackley, M. R., The experimental measurement and modelling of sedimentation and creaming for glyc-erol/biodiesel droplet dispersions, Chem. Eng. Sci., 79 (2012), pp. 125–137.

[2]Batchelor, G. K. and Rensburg, R.W. Janse Van, Structure formation in bidisperse sedimentation, J. Fluid Mech., 166 (1986), pp. 379–407.

[3]Benzoni-Gavage, S. and Colombo, R. M., An n-populations model for traffic flow, Euro. J. Appl. Math., 14 (2003), pp. 587–612.

[4]Benzoni-Gavage, S., Colombo, R. M. and Gwiazda, P., Measure valued solutions to conservation laws motivated by traffic modelling, Proc. Royal Soc. A, 462 (2006), pp. 1791–1803.

[5]Berres, S., Bürger, R., Karlsen, K.H. and Tory, E. M., Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression, SIAM J. Appl. Math., 64 (2003), pp. 41–80.

[6]Berres, S., Bürher, R. and Kozakevicius, A., Numerical approximation of oscillatory solutions of hyperbolic-elliptic systems of conservation laws by multiresolution schemes, Adv. Appl. Math. Mech., 1 (2009), pp. 581–614.

[7]Bürger, R., García, A., Karlsen, K.H. and Towers, J. D., A family of numerical schemes for kinematic flows with discontinuous flux, J. Eng. Math., 60 (2008), pp. 387–425.

[8]Bürger, R. and Karlsen, K.H., On a diffusively corrected kinematic-wave traffic flow model with changing road surface conditions, Math. Models Methods Appl. Sci., 13 (2003), pp. 1767–1799.

[9]Bürger, R., Karlsen, K.H., Tory, E. M. and Wendland, W. L., Model equations and instability regions for the sedimentation of polydisperse suspensions of spheres, ZAMM Z. Angew. Math. Mech., 82 (2002), pp. 699–722.

[10]Bürger, R., Karlsen, K. H. and Towers, J. D., On some difference schemes and entropy conditions for a class of multi-species kinematic flow models with discontinuous flux, Netw. Heterog. Media, 5 (2010), pp. 461–485.

[11]Bürger, R. and Kozakevicius, A., Adaptive multiresolution WENO schemes for multi-species kinematic flow models, J. Comput. Phys., 224 (2007), pp. 1190–1222.

[12]Bürger, R., Mulet, P. and Villada, L. M., Implicit-explicit methods for diffusively corrected multi-species kinematic flow models, Preprint 2012-21, Centro de Investigación en Ingeniería Matemática, Universidad de Concepción, 2012.

[13]Daganzo, C., Requiem for second-order fluid approximations of traffic flow, Transp. Res. B, 29 (1995), pp. 277–286.

[14]Dick, A. C., Speed/flow relationships within an urban area, Traffic Eng. Control, 8 (1996), pp. 393–396.

[15]Donat, R. and Mulet, P., Characteristic-based schemes for multi-class Lighthill-Whitham-Richards traffic models, J. Sci. Comput., 37 (2008), pp. 233–250.

[16]Donat, R. and Mulet, P., A secular equation for the Jacobian matrix of certain multi-species kinematic flow models, Numer. Methods Partial Differential Equations, 26 (2010), pp. 159–175.

[17]Greenberg, H., An analysis of traffic flow, Oper. Res., 7 (1959), pp. 79–85.

[18]Herty, M., Kirchner, C. and Moutari, S., Multi-class traffic models on road networks, Commun. Math. Sci., 4 (2006), pp. 591–608.

[19]Kurganov, A. and Polizzi, A., Non-oscillatory central schemes for traffic flow models with Arrhenius look-ahead dynamics, Netw. Heterog. Media, 4 (2009), pp. 431–451.

[20]Kurganov, A. and Tadmor, E., New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations, J. Comput. Phys., 160 (2000), pp. 241–282.

[21]Lighthill, M. J. and Whitham, G. B., On kinematic waves: II. A theory of traffic flow on long crowded roads, Proc. Royal Soc. A, 229 (1955), pp. 317–345.

[22]Logghe, S. and Immers, L. H., Multi-class kinematic wave theory of traffic flow, Transp. Res. B, 42 (2008), pp. 523–541.

[23]Nelson, P., Synchronized traffic flow from a modified Lighthill-Whitman model, Phys. Rev. E, 61 (2000), pp. R6062–R6055.

[24]Nelson, P., Traveling-wave solution of the diffusively corrected kinematic-wave model, Math. Comput. Model., 35 (2002), pp. 561–579.

[25]Nelson, P. and Sopasakis, A., The Chapman-Enskog expansion: a novel approach to hierarchical extension of Lighthill-Whitham models, In: Ceder, A. (ed.), Transportation and Traffic Theory: Proceedings of the 14th International Symposium on Transportation and Traffic Theory, Jerusalem, Israel, 20–23 July 1999. Elsevier, Amsterdam, 1999, pp. 51–79.

[26]Ngoduy, D., Multiclass first-order modelling of traffic networks using discontinuous flow-density relationships, Transportmetrica, 6 (2010), pp. 121–141.

[27]Ngoduy, D., Multiclass first-order traffic model using stochastic fundamental diagrams, Transportmetrica, 7 (2011), pp. 111–125.

[28]Ngoduy, D., Effect of driver behaviours on the formation and dissipation of traffic flow instabilities, Nonlin. Dynamics, 69 (2012), pp. 969–975.

[29]Ngoduy, D. and Tampere, C., Macroscopic effect of reaction time on traffic flow characteristics, Phys. Scripta, 80 (2009), paper 025802.

[30]Prigogine, I. and Herman, R., Kinetic Theory of Vehicular Traffic, American Elsevier, New York, 1971.

[31]Richards, P. I., Shock waves on the highway, Oper. Res., 4 (1956), pp. 42–51.

[32]Rouvre, E. and Gagneux, G., Solution forte entropique de lois scalaires hyperboliques-paraboliques dégénérées, C. R. Acad. Sci. Paris Sér. I, 329 (1999), pp. 599–602.

[33]Siebel, F. and Mauser, W., On the fundamental diagram of traffic flow, SIAM J. Appl. Math., 66 (2006), pp. 1150–1162.

[34]Sopasakis, A. and Katsoulakis, M. A., Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics, SIAM J. Appl. Math., 66 (2006), pp. 921–944.

[35]Treiber, M. and Kesting, A., Verkehrsdynamik und- simulation, Springer-Verlag, Berlin, 2010.

[36]Treiber, M., Kesting, A. and Helbing, D., Influence of reaction times and anticipation on stability of vehicular traffic flow, Transp. Res., Record No. 1999 (2007), pp. 23–29.

[37]Wong, G. C. K. and Wong, S. C., A multi-class traffic flow model–an extension of LWR model with heterogeneous drivers, Transp. Res. A, 36 (2002), pp. 827–841.

[38]Zhang, M., Shu, C.-W., Wong, G. C. K. and Wong, S. C., A weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, J. Comput. Phys., 191 (2003), pp. 639–659.

[39]Zhang, P., Liu, R.-X., Wong, S. C. and Dai, S. Q., Hyperbolicity and kinematic waves of a class of multi-population partial differential equations, Euro. J. Appl. Math., 17 (2006), 171–200.

[40]Zhang, P., Wong, S. C. and Dai, S.-Q., A note on the weighted essentially non-oscillatory numerical scheme for a multi-class Lighthill-Whitham-Richards traffic flow model, Commun. Numer. Meth. Eng., 25 (2009), pp. 1120–1126.

[41]Zhang, P., Wong, S. C. and shu, C.-W., A weighted essentially non-oscillatory numerical scheme for a multi-class traffic flow model on an inhomogeneous highway, J. Comput. Phys., 212 (2006), pp. 739–756.

[42]Zhang, P., Wong, S. C. and Xu, Z., A hybrid scheme for solving a multi-class traffic flow model with complex wave breaking, Comput. Meth. Appl. Mech. Eng., 197 (2008), pp. 3816–3827.