[1]
Brunner, H., The numerical solutions of weakly singular Volterra integral equations by collocation on graded meshes, Math. Comput., 45 (1985), pp. 417–437.

[2]
Brunner, H., Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels, IMA J. Numer. Anal., 6 (1986), pp. 221–239.

[3]
Brunner, H., Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press
2004.

[4]
Canuto, C., Hussaini, M. Y., Quarteroni, A. and Zang, T. A., Spectral Methods Fundamentals in Single Domains, Springer-Verlag
2006.

[5]
Diogo, T., McKee, S. and Tang, T., Collocation methods for second-kind Volterra integral equations with weakly singular kernels, Proceedings of The Royal Society of Edinburgh, 124A (1994), pp. 199–210.

[6]
Gogatishvill, A. and Lang, J., The generalized hardy operator with kernel and variable integral limits in Banach function spaces, J. Inequalities Appl., 4(1) (1999), pp. 1–16.

[7]
Graham, I. G. and Sloan, I. H., Fully discrete spectral boundary integral methods for Helmholtz problems on smooth closed surfaces in ℝ^{3}
, Numer. Math., 92 (2002), pp. 289–323.

[8]
Hu, Q., Stieltjes derivatives and polynomial spline collocation for Volterra integro-differential equa- tions with singularities, SIAM J. Numer. Anal., 33 (1996), pp. 208–220.

[9]
Kufner, A. and Persson, L. E., Weighted Inequalities of Hardy Type, World Scientific, New York, 2003.

[10]
Lubich, CH., Fractional linear multi-step methods for Abel-Volterra integral equations of the second kind, Math. Comput., 45 (1985), pp. 463–469.

[11]
Mastroianni, G. and Occorsio, D., Optimal systems of nodes for Lagrange interpolation on bounded intervals: A survey, J. Comput. Appl. Math., 134 (2001), pp. 325–341.

[12]
Nevai, P., Mean convergence of Lagrange interpolation III, Trans. Amer. Math. Soc., 282 (1984), pp. 669–698.

[13]
Ragozin, D. L., Polynomial approximation on compact manifolds and homogeneous spaces, Trans. Amer. Math. Soc., 150 (1970), pp. 41–53.

[14]
Ragozin, D. L., Constructive polynomial approximation on spheres and projective spaces, Trans. Amer. Math. Soc., 162 (1971), pp. 157–170.

[15]
Te Riele, H. J.J., Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solution, IMA J. Numer. Anal., 2 (1982), pp. 437–449.

[16]
Samko, S. G. and Cardoso, R. P., Sonine integral equations of the first kind in L_{p}(0,b), Fract. Calc. Appl. Anal., 6 (2003), pp. 235–258.

[17]
Shen, J. and Tang, T., Spectral and High-Order Methods with Applications, Science Press, Beijing, 2006.

[18]
Tang, T., Superconvergence of numerical solutions to weakly singular Volterra integro-differential equations, Numer. Math., 61 (1992), pp. 373–382.

[19]
Tang, T., A note on collocation methods for Volterra integro-differential equations with weakly singular kernels, IMA J. Numer. Anal., 13 (1993), pp. 93–99.

[20]
Willett, D., A linear generalization of Gronwall's inequality, Proceedings of the American Mathematical Society, 16 (1965), pp. 774–778.

[21]
Chen, Y., Li, X. and Tang, T., Convergence analysis of the Jacobi spectral-collocation methods for weakly singular Volterra integral equation with smooth solution, J. Comput. Appl. Math., 233 (2009), pp. 938–950.

[22]
Chen, Y., Li, X. and Tang, T., A note on Jacobi spectral-collocation methods for weakly singular Volterra integral equations with smooth solutions, J. Comput. Math., 31(1) (2013), pp. 47–56.

[23]
Chen, Y. and Tang, T., Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equation with aweakly singular kernel, Math. Comput., 79 (2010), pp. 147–167.

[24]
Chen, Yanping and Gu, Zhendong, Legendre spectral-collocation method for Volterra integral differential equations with non-vanishing delay, Commun. Appl.Math. Comput. Sci., 8(1) (2013), pp. 67–98.

[25]
Gu, Zhendong and Chen, Yanping, Chebyshev spectral-collocation method for Volterra integral equations, Contemp. Math., 586 (2013), pp. 163–170.

[26]
Yang, Y., Chen, Y., Huang, Y. and Yang, W., Convergence analysis of Legendre-collocation methods for nonlinear volterra type integro equations, Adv. Appl. Math. Mech., 7(1) (2015), pp. 74–88.

[27]
Yang, Yin, Chen, Yanping and Huang, Yunqing, Spectral-collocation method for fractional Fredholm integro-differential equations, J. Korean Math. Soc., 51(1) (2014), pp. 203–224.

[28]
Shi, X. and Chen, Y., Spectral-collocation method for Volterra delay integro-differential equations with weakly singular kernels, Adv. Appl. Math. Mech., 8(4) (2016), pp. 648–669.