[1]Li, X., Leung, R. K. and So, R. C., One-step aeroacoustics simulation using lattice Boltzmann method, AIAA J., 44 (2006), pp. 78–89.

[2]Viggen, E. M., Viscously damped acoustic waves with the lattice Boltzmann method, Philos. T. Roy. Soc. A, 369 (2011), pp. 2246–2254.

[3]Tajiri, S., Tsutahara, M. and Tanaka, H., Direct simulation of sound and underwater sound generated by a water drop hitting a water surface using the finite difference lattice Boltzmann method, Comput. Math. Appl., 59 (2010), pp. 2411–2420.

[4]Ikeda, T., Atobe, T. and Takagi, S., Direct simulations of trailing-edge noise generation from two-dimensional airfoils at low Reynolds numbers, J. Sound Vibration, 331 (2012), pp. 556–574.

[5]Kusano, K., Yamada, K. and Furukawa, M., *Toward direct numerical simulation of aeroacoustic field around airfoil using multi-scale lattice Boltzmann method*, ASME 2013 Fluids Engineering Division Summer Meeting, American Society of Mechanical Engineers, Nevada, USA, 2013, V01AT09A005.

[6]Xu, A., Zhang, G., Li, Y. and Li, H., Modeling and simulation of nonequilibrium and multiphase complex systems: lattice Boltzmann kinetic theory and application, Progress Phys., 34 (2014), pp. 136–167, in Chinese.

[7]Xu, A., Lin, C., Zhang, G. and Li, Y., Multiple-relaxation-time lattice Boltzmann kinetic model for combustion, Phys. Rev. E, 91 (2015), 043306.

[8]Bhatnagar, P. L., Gross, E. P. and Krook, M., A model for collision processes in gases i. small amplitude processes in charged and neutral one-component systems, Phys. Rev., 94 (1954), pp. 511–525.

[9]Succi, S., The Lattice Boltzmann Equation: for Fluid Dynamics and Beyond, Oxford University Press, 2001.

[10]Xu, A. G., Zhang, G. C., Gan, Y. B., Chen, F. and Yu, X. J., Lattice Boltzmann modeling and simulation of compressible flows, Frontiers Phys., 7 (2012), pp. 582–600.

[11]Alexander, F. J., Chen, S. and Sterling, J. D., Lattice Boltzmann thermohydrodynamics, Phys. Rev. E, 47 (1993), pp. R2249–R2252.

[12]Qian, Y., Simulating thermohydrodynamics with lattice BGK models, J. Sci. Comput., 8 (1993), pp. 231–242.

[13]Yan, G., Chen, Y. and Hu, S., Simple lattice Boltzmann model for simulating flows with shock wave, Phys. Rev. E, 59 (1999), pp. 454–459.

[14]Yan, G., Zhang, J., Liu, Y. and Dong, Y., A multi-energy-level lattice Boltzmann model for the compressible Navier-Stokes equations, Int. J. Numer. Methods Fluids, 55 (2007), pp. 41–56.

[15]Sun, C., Lattice-Boltzmann models for high speed flows, Phys. Rev. E, 58 (1998), pp. 7283–7287.

[16]Sun, C., Adaptive lattice Boltzmann model for compressible flows: viscous and conductive properties, Phys. Rev. E, 61 (2000), pp. 2645–2653.

[17]Shi, W., Shyy, W. and Mei, R., Finite-difference-based lattice Boltzmann method for inviscid compressible flows, Numer. Heat Transfer B Fundamentals, 40 (2001), pp. 1–21.

[18]Kataoka, T. and Tsutahara, M., Lattice Boltzmann model for the compressible Euler equations, Phys. Rev. E, 69 (2004), 056702.

[19]Kataoka, T. and Tsutahara, M., Lattice Boltzmann model for the compressible Navier-Stokes equations with flexible specific-heat ratio, Phys. Rev. E, 69 (2004), 035701.

[20]Watari, M., Finite difference lattice Boltzmann method with arbitrary specific heat ratio applicable to supersonic flow simulations, Phys. A Stat. Mech. Appl., 382 (2007), pp. 502–522.

[21]He, X., Chen, S. and Doolen, G. D., A novel thermal model for the lattice Boltzmann method in incompressible limit, J. Comput. Phys., 146 (1998), pp. 282–300.

[22]Guo, Z., Zheng, C., Shi, B. and Zhao, T. S., Thermal lattice Boltzmann equation for low Mach number flows: decoupling model, Phys. Rev. E, 75 (2007), 036704.

[23]Li, K. and Zhong, C., A lattice Boltzmann model for simulation of compressible flows, Int. J. Numer. Methods Fluids, 77 (2015), pp. 334–357.

[24]Buick, J., Greated, C. and Campbell, D., Lattice BGK simulation of sound waves, Europhys. Lett., 43 (1998), pp. 235–240.

[25]Buick, J., Buckley, C., Greated, C. and Gilbert, J., Lattice Boltzmann BGK simulation of nonlinear sound waves: the development of a shock front, J. Phys. A Math. General, 33 (2000), pp. 3917–3928.

[26]Haydock, D. and Yeomans, J., Lattice Boltzmann simulations of acoustic streaming, J. Phys. A Math. General, 34 (2001), pp. 5201–5213.

[27]Marié, S., Ricot, D. and Sagaut, P., *Accuracy of lattice Boltzmann method for aeroacoustics simulations*, AIAA Paper, 3515 (2007).

[28]Marié, S., Ricot, D. and Sagaut, P., Comparison between lattice Boltzmann method and Navier-Stokes high order schemes for computational aeroacoustics, J. Comput. Phys., 228 (2009), pp. 1056–1070.

[29]Xu, H. and Sagaut, P., Optimal low-dispersion low-dissipation LBM schemes for computational aeroacoustics, J. Comput. Phys., 230 (2011), pp. 5353–5382.

[30]Kang, H. K., Ro, K. D., Tsutahara, M. and Lee, Y. H., Numerical prediction of acoustic sounds occurring by the flow around a circular cylinder, KSME Int. J., 17 (2003), pp. 1219–1225.

[31]Tsutahara, M., Kondo, T. and Mochizuki, K., *Direct simulations of acoustic waves by finite volume lattice Boltzmann method*, AIAA Paper, 2570 (2006).

[32]Laffite, A. and Pérot, F., *Investigation of the noise generated by cylinder flows using a direct lattice-Boltzmann approach*, AIAA Paper, 3268 (2009).

[33]Tamura, A., Tsutahara, M., Kataoka, T., Aoyama, T. and Yang, C., Numerical simulation of two-dimensional blade-vortex interactions using the finite difference lattice Boltzmann method, AIAA J., 46 (2008), pp. 2235–2247.

[34]Satti, R., Lew, P. T., Li, Y., Shock, R. and Noelting, S., Unsteady flow computations and noise predictions on a rod-airfoil using lattice Boltzmann method, AIAA Paper, 497 (2009).

[35]Jones, L. E., Numerical Studies of the Flow Around an Airfoil at Low Reynolds Number, PhD thesis, University of Southampton, 2008.

[36]Qu, K., Development of Lattice Boltzmann Method for Compressible Flows, PhD thesis, National University of Singapore, 2009.

[37]Li, Q., He, Y. L., Wang, Y. and Tao, W. Q., Coupled double-distribution-function lattice Boltzmann method for the compressible Navier-Stokes equations, Phys. Rev. E, 76 (2007), 056705.

[38]Tsutahara, M., The finite-difference lattice Boltzmann method and its application in computational aero-acoustics, Fluid Dyn. Research, 44 (2012), 045507.

[39]Van Leer, B., Towards the ultimate conservative difference scheme. v. a second-order sequel to godunov's method, J. Comput. Phys., 32 (1979), pp. 101–136.

[40]Kermani, M., Gerber, A. and Stockie, J., Thermodynamically based moisture prediction using Roe's scheme, 4th Conference of Iranian Aerospace Society, Amir Kabir University of Technology, Tehran, Iran, 2003, pp. 27–29.

[41]Pareschi, L. and Russo, G., Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation, J. Sci. Comput., 25 (2005), pp. 129–155.

[42]Patil, D., Chapman-Enskog analysis for finite-volume formulation of lattice Boltzmann equation, Phys. A Stat. Mech. Appl., 392 (2013), pp. 2701–2712.

[43]Van Albada, G., Van Leer, B. and Roberts, W. Jr, A comparative study of computational methods in cosmic gas dynamics, Astronomy Astrophys., 108 (1982), pp. 76–84.

[44]Guo, Z., Zheng, C. and Shi, B., Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method, Chinese Phys., 11 (2002), pp. 366–374.

[45]Da Silva, A. R., Numerical Studies of Aeroacoustic Aspects of Wind Instruments, PhD thesis, McGill University, 2008.

[46]Inoue, O. and Hatakeyama, N., Sound generation by a two-dimensional circular cylinder in a uniform flow, J. Fluid Mech., 471 (2002), pp. 285–314.

[47]Tsutahara, M., Kataoka, T., Shikata, K. and Takada, N., New model and scheme for compressible fluids of the finite difference lattice Boltzmann method and direct simulations of aerodynamic sound, Comput. Fluids, 37 (2008), pp. 79–89.

[48]Mavriplis, D. J. and Jameson, A., Multigrid solution of the Navier-Stokes equations on triangular meshes, AIAA J., 28 (1990), pp. 1415–1425.

[49]Bassi, F. and Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys., 131 (1997), pp. 267–279.

[50]Bouhadji, A. and Braza, M., Organised modes and shock-vortex interaction in unsteady viscous transonic flows around an aerofoil: part i: Mach number effect, Comput. Fluids, 32 (2003), pp. 1233–1260.