Skip to main content Accessibility help
×
Home
Hostname: page-component-59b7f5684b-gsnzm Total loading time: 0.222 Render date: 2022-10-03T03:10:56.210Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "displayNetworkTab": true, "displayNetworkMapGraph": true, "useSa": true } hasContentIssue true

Stability of Symmetric Solitary Wave Solutions of a Forced Korteweg-de Vries Equation and the Polynomial Chaos

Published online by Cambridge University Press:  03 June 2015

Hongjoong Kim*
Affiliation:
Department of Mathematics, Korea University, Seoul 136-701, Korea
Kyoung-Sook Moon*
Affiliation:
Mathematics & Information, Gachon University, Gyeonggi-do 461-701, Korea
*
Corresponding author. Email: hongjoong@korea.ac.kr
Get access

Abstract

In this paper, we consider the numerical stability of gravity-capillary waves generated by a localized pressure in water of finite depth based on the forced Korteweg-de Vries (FKdV) framework and the polynomial chaos. The stability studies are focused on the symmetric solitary wave for the subcritical flow with the Bond number greater than one third. When its steady symmetric solitary-wave-like solutions are randomly perturbed, the evolutions of some waves show stability in time regardless of the randomness while other waves produce unstable fluctuations. By representing the perturbation with a random variable, the governing FKdV equation is interpreted as a stochastic equation. The polynomial chaos expansion of the random solution has been used for the study of stability in two ways. First it allows us to identify the stable solution of the stochastic governing equation. Secondly it is used to construct upper and lower bounding surfaces for unstable solutions, which encompass the fluctuations of waves.

Type
Research Article
Copyright
Copyright © Global-Science Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Washimi, H. and Taniuti, T., Propagation of ion-acoustic solitary waves of small amplitude, Phys. Rev. Lett., 17 (1966), pp. 996998.CrossRefGoogle Scholar
[2]Akylas, T. R., On the excitation of long nonlinear water waves by moving pressure distribution, J. Fluid Mech., 141 (1984), pp. 455466.CrossRefGoogle Scholar
[3]Grimshaw, R. and Smyth, N., Resonant flow of a stratified fluid over topography, J. Fluid Mech., 169 (1986), pp. 429464.CrossRefGoogle Scholar
[4]Wu, T. Y., Generation of upstream advancing solitons by moving disturbances, J. Fluid Mech., 184 (1987), pp. 7599.CrossRefGoogle Scholar
[5]Forbes, L. K., Critical free surface flow over a semicircular obstruction, J. Eng. Math., 22 (1988), pp. 313.CrossRefGoogle Scholar
[6]Sha, H. and J. Broeck, M. Vanden, Internal solitary waves with stratification in density, Aust. Math. Soc. B, 38 (1997), pp. 563580.CrossRefGoogle Scholar
[7]Shen, S. P., Monohar, R. P. and Gong, L., Stability of the lower cusped solitary waves, J. Phys. Fluid., 7 (1995), pp. 25072509.CrossRefGoogle Scholar
[8]Choi, J. W., Sun, S. M. and Shen, M. C., Steady capillary-gravity waves on the interface of two-layer fluid over an obstruction-forced modified k-dv equation, J. Eng. Math., 28 (1994), pp. 193210.CrossRefGoogle Scholar
[9]Bona, J. L., Sun, S-M. and Zhang, B-Y., Forced oscillations of a damped Korteweg-De Vries equation in a quarter plane, Commun. Contemp. Math., 5(3) (2003), pp. 369400.CrossRefGoogle Scholar
[10]Larkin, N. A., Modified kdv equation with a source term in a bounded domain, Math. Methods Appl. Sci., 29(7) (2006), pp. 751765.CrossRefGoogle Scholar
[11]Pava, J. A. and Natali, F. M. A., Stability and instability of periodic travelling wave solutions for the critical korteweg-de vries and nonlinear schrdinger equations, Phys. D Nonlinear Phenomena, 238(6) (2009), pp. 603621.CrossRefGoogle Scholar
[12]Camassa, R. and Wu, T. Y-T., Stability of some stationary solutions for the forced kdv equation, Phys. D Nonlinear Phenomena, 51(1-3) (1991), pp. 295307.CrossRefGoogle Scholar
[13]Camassa, R. and Wu, T. Y-T., Stability of forced steady solitary waves, Philos. Trans. Phys. Sci. Eng., 337(1648) (1991), pp. 429466.CrossRefGoogle Scholar
[14]Grimshaw, R., Maleewong, M. and Asavanant, J., Stability of gravity-capillary waves generated by a moving pressure disturbance in a water of finite depth, Phys. Fluids, 21 (2009), pp. 082101-1–082101-10.CrossRefGoogle Scholar
[15]Chardard, F., Dias, F., Nguyen, H. Y. and Vanden-Broeck, J., Stability of some stationary solutions to the forced KdV equation with one or two bumps, Eng. Math., 70 (2011), pp. 115.Google Scholar
[16]Kim, H., Bae, W.-S. and Choi, J., Numerical stability of symmetric solitary-wave-like waves of a two-layer fluid-Forced modified KdV equation, Math. Comput. Sim., 82(7) (2012), pp. 12191227.CrossRefGoogle Scholar
[17]Maleewong, M., Asavanant, J. and Grimshaw, R., Free surface flow under gravity and surface tension due to an applied pressure distribution: I Bond number greater than one-third, Theor. Comput. Fluid Dyn., 19(4) (2005), pp. 237252.CrossRefGoogle Scholar
[18]Cameron, R. H. and Martin, W. T., The orthogonal development of non-linear functionals in series of fourier-hermite functionals, Ann. Math., 48 (1947), pp. 385392.CrossRefGoogle Scholar
[19]Mikulevicius, R. and Rozovskii, B. L., Linear parabolic stochastic pdes and wiener chaos, SIAM J. Math. Anal., 29(2) (1998), pp. 452480.CrossRefGoogle Scholar
[20]Mikulevicius, R. and Rozovskii, B. L., Stochastic navier-stokes equations for turbulent flows, SIAM J. Math. Anal., 35(5) (2004), pp. 12501310.CrossRefGoogle Scholar
[21]Ghanem, R. G. and Spanos, P. D., Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.CrossRefGoogle Scholar
[22]Ghanem, R. G., Ingredients for a general purpose stochastic finite element formulation, Comput. Methods Appl. Mech. Eng., 125 (1999), pp. 2640.Google Scholar
[23]Xiu, D. and Karniadakis, G. E., The wiener-askey polynomial chaos for stochastic differential equations, SIAM J. Sci. Comput., 24(2) (2002), pp. 619644.CrossRefGoogle Scholar
[24]Askey, R. and Wilson, J., Some basic hypergeometric polynomials that generalize Jacobi polynomials, Mem. Amer. Math. Soc. AMS, Providence, RI, 1985.Google Scholar
[25]Kim, H., Two-step maccormack method for statistical moments of a stochastic burger’s equation, Dyn. Continuous Dis. Impulsive Syst., 14 (2007), pp. 657684.Google Scholar
[26]Szego, G., Orthogonal polynomials, American Mathematical Society, Providence, RI, 1939.Google Scholar
[27]Trefethen, L. N., Spectral Methods in Matlab, SIAM, Philadelphia, PA, 2000.CrossRefGoogle Scholar

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Stability of Symmetric Solitary Wave Solutions of a Forced Korteweg-de Vries Equation and the Polynomial Chaos
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Stability of Symmetric Solitary Wave Solutions of a Forced Korteweg-de Vries Equation and the Polynomial Chaos
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Stability of Symmetric Solitary Wave Solutions of a Forced Korteweg-de Vries Equation and the Polynomial Chaos
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *