No CrossRef data available.
Article contents
Conservative and Finite Volume Methods for the Convection-Dominated Pricing Problem
Published online by Cambridge University Press: 03 June 2015
Abstract
This work presents a comparison study of different numerical methods to solve Black-Scholes-type partial differential equations (PDE) in the convection-dominated case, i.e., for European options, if the ratio of the risk-free interest rate and the squared volatility-known in fluid dynamics as Péclet number-is high. For Asian options, additional similar problems arise when the “spatial” variable, the stock price, is close to zero.
Here we focus on three methods: the exponentially fitted scheme, a modification of Wang’s finite volume method specially designed for the Black-Scholes equation, and the Kurganov-Tadmor scheme for a general convection-diffusion equation, that is applied for the first time to option pricing problems. Special emphasis is put in the Kurganov-Tadmor because its flexibility allows the simulation of a great variety of types of options and it exhibits quadratic convergence. For the reduction technique proposed by Wilmott, a put-call parity is presented based on the similarity reduction and the put-call parity expression for Asian options. Finally, we present experiments and comparisons with different (non)linear Black-Scholes PDEs.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Global-Science Press 2013