Skip to main content Accessibility help

1D Exact Elastic-Perfectly Plastic Solid Riemann Solver and Its Multi-Material Application


The equation of state (EOS) plays a crucial role in hyperbolic conservation laws for the compressible fluid. Whereas, the solid constitutive model with elastic-plastic phase transition makes the analysis of the solid Riemann problem more difficult. In this paper, one-dimensional elastic-perfectly plastic solid Riemann problem is investigated and its exact Riemann solver is proposed. Different from previous works treating the elastic and plastic phases integrally, we resolve the elastic wave and plastic wave separately to understand the complicate nonlinear waves within the solid and then assemble them together to construct the exact Riemann solver for the elastic-perfectly plastic solid. After that, the exact solid Riemann solver is associated with the fluid Riemann solver to decouple the fluid-solid multi-material interaction. Numerical tests, including gas-solid, water-solid high-speed impact problems are simulated by utilizing the modified ghost fluid method (MGFM).


Corresponding author

*Corresponding author. Email: (S. Gao), (T. G. Liu)


Hide All
[1] Godunov, S. K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959), pp. 357393.
[2] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3th ed., Springer-Verlag, 2009.
[3] Einfeldt, B., On Godunov-Type methods for gas dynamics, SIAM J. Numer. Anal., 25 (1988), pp. 294318.
[4] Einfeldt, B., Munz, C. D., Roe, P. L. and Sjögreen, B., On Godunov-Type methods near low densities, J. Comput. Phys., 92 (1991), pp. 273295.
[5] Haten, A., Lax, P. D. and Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (2002), pp. 3561.
[6] Toro, E. F., Spurse, M. and Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4 (1994), pp. 2534.
[7] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), pp. 357372.
[8] Engquist, B. and Osher, S., One sided difference approximations for nonlinear conservation laws, Math. Comput., 36 (1981), pp. 321351.
[9] Osher, S. and Solomon, F., Upwind difference schemes for hyperbolic conservation laws, Math. Comput., 38 (1982), pp. 339374.
[10] Liu, T. G., Khoo, B. C. and Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190 (2003), pp. 651681.
[11] Liu, T. G., Xie, W. F. and Khoo, B. C., The modified ghost fluid method for coupling of fluid and structure constituted with Hydro-Elasto-Plastic equation of state, SIAM J. Sci. Comput., 33 (2008), pp. 11051130.
[12] Liu, T. G., Chowdhury, A. W. and Khoo, B. C., The modified ghost fluid method applied to fluid-elastic structure interaction, Adv. Appl. Math. Mech., 3 (2011), pp. 611632.
[13] Kaboudian, A. and Khoo, B. C., The ghost solid method for the elastic solid-solid interface, J. Comput. Phys., 257 (2014), pp. 102125.
[14] LeFloch, P. G. and Olsson, F., A second-order Godunov method for the conservation laws of nonlinear elastidynamics, Impact Comput. Sci. Eng., 2 (1990), pp. 318354.
[15] Garaizar, X., Solution of a Riemann problem for elasticity, J. Elasticity., 26 (1991), pp. 4363.
[16] Miller, G. H., An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics, J. Comput. Phys., 193 (2003), pp. 198225.
[17] Barton, P. T., Drikakis, D., Romenski, E. and Titarev, V. A., Exact and approximate solutions of Riemann problems in non-linear elasticity, J. Comput. Phys., 228 (2009), pp. 70467068.
[18] López Ortega, A., Lombardini, M., Pullin, D. I. and Meiron, D. I., Numerical simulation of elastic-plastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver, J. Comput. Phys., 257 (2014), pp. 414441.
[19] Trangenstein, J. A. and Pember, R. B., The Riemann problem for longitudinal motion in an elastic-plastic bar, SIAM J. Sci. State. Comput., 12 (1991), pp. 180207.
[20] Lin, X., Numerical Computation of Stress Waves in Solids, Akademie Verlag, 1996.
[21] Wang, F., Glimm, J. G., Grove, J. W., Plohr, B. J. and Sharp, D. H., A conservative Eulerian numerical scheme for elasto-plasticity and application to plate impact problems, Impact Comput. Sci. Eng., 5 (1993), pp. 285308.
[22] Plohr, B. and Sharp, B., A conservative formulation for plasticity, Adv. Appl. Math., 13 (1992), pp. 462493.
[23] Miller, G. H. and Colella, P., A high-order Eulerian Godunov Method for elastic-plastic flow in solids, J. Comput. Phys., 167 (2001), pp. 131176.
[24] Trangenstein, J. A. and Colella, P., A higher-order Godunov method for modeling finite deformation in elastic-plastics solids, Commun. Pure Appl. Math., 44 (1991), pp. 41100.
[25] Wilkins, M. L., Calculation of elastic-plastic flow, Meth. Comput. Phys., 3 (1964), pp. 211263.
[26] Tang, H. S. and Sotiropoulos, F., A second-order Godunov method for wave problems in coupled solid-water-gas systems, J. Comput. Phys., 151 (1999), pp. 790815.
[27] Fedkiw, R. P., Marquina, A. and Merriman, B., An isobaric fix for the overheating problem in multimaterial compressible flows, J. Comput. Phys., 148 (1999), pp. 545578.
[28] Smooler, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1983.
[29] Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), J. Comput. Phys., 152 (1999), pp. 457492.
[30] Guo, Y. H., Li, R. and Yao, C. B., A numerical method on Eulerian grids for two-phase compressible flow, Adv. Appl. Math. Mech., 8 (2016), pp. 187212.
[31] Xu, L. and Liu, T. G., Modified ghost fluid method as applied to fluid-plate interaction, Adv. Appl. Math. Mech., 6 (2014), pp. 2448.


MSC classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed