[1]
Godunov, S. K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sb., 47 (1959), pp. 357–393.

[2]
Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction, 3th ed., Springer-Verlag, 2009.

[3]
Einfeldt, B., On Godunov-Type methods for gas dynamics, SIAM J. Numer. Anal., 25 (1988), pp. 294–318.

[4]
Einfeldt, B., Munz, C. D., Roe, P. L. and Sjögreen, B., On Godunov-Type methods near low densities, J. Comput. Phys., 92 (1991), pp. 273–295.

[5]
Haten, A., Lax, P. D. and Van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25 (2002), pp. 35–61.

[6]
Toro, E. F., Spurse, M. and Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4 (1994), pp. 25–34.

[7]
Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J. Comput. Phys., 43 (1981), pp. 357–372.

[8]
Engquist, B. and Osher, S., One sided difference approximations for nonlinear conservation laws, Math. Comput., 36 (1981), pp. 321–351.

[9]
Osher, S. and Solomon, F., Upwind difference schemes for hyperbolic conservation laws, Math. Comput., 38 (1982), pp. 339–374.

[10]
Liu, T. G., Khoo, B. C. and Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190 (2003), pp. 651–681.

[11]
Liu, T. G., Xie, W. F. and Khoo, B. C., The modified ghost fluid method for coupling of fluid and structure constituted with Hydro-Elasto-Plastic equation of state, SIAM J. Sci. Comput., 33 (2008), pp. 1105–1130.

[12]
Liu, T. G., Chowdhury, A. W. and Khoo, B. C., The modified ghost fluid method applied to fluid-elastic structure interaction, Adv. Appl. Math. Mech., 3 (2011), pp. 611–632.

[13]
Kaboudian, A. and Khoo, B. C., The ghost solid method for the elastic solid-solid interface, J. Comput. Phys., 257 (2014), pp. 102–125.

[14]
LeFloch, P. G. and Olsson, F., A second-order Godunov method for the conservation laws of nonlinear elastidynamics, Impact Comput. Sci. Eng., 2 (1990), pp. 318–354.

[15]
Garaizar, X., Solution of a Riemann problem for elasticity, J. Elasticity., 26 (1991), pp. 43–63.

[16]
Miller, G. H., An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics, J. Comput. Phys., 193 (2003), pp. 198–225.

[17]
Barton, P. T., Drikakis, D., Romenski, E. and Titarev, V. A., Exact and approximate solutions of Riemann problems in non-linear elasticity, J. Comput. Phys., 228 (2009), pp. 7046–7068.

[18]
López Ortega, A., Lombardini, M., Pullin, D. I. and Meiron, D. I., Numerical simulation of elastic-plastic solid mechanics using an Eulerian stretch tensor approach and HLLD Riemann solver, J. Comput. Phys., 257 (2014), pp. 414–441.

[19]
Trangenstein, J. A. and Pember, R. B., The Riemann problem for longitudinal motion in an elastic-plastic bar, SIAM J. Sci. State. Comput., 12 (1991), pp. 180–207.

[20]
Lin, X., Numerical Computation of Stress Waves in Solids, Akademie Verlag, 1996.

[21]
Wang, F., Glimm, J. G., Grove, J. W., Plohr, B. J. and Sharp, D. H., A conservative Eulerian numerical scheme for elasto-plasticity and application to plate impact problems, Impact Comput. Sci. Eng., 5 (1993), pp. 285–308.

[22]
Plohr, B. and Sharp, B., A conservative formulation for plasticity, Adv. Appl. Math., 13 (1992), pp. 462–493.

[23]
Miller, G. H. and Colella, P., A high-order Eulerian Godunov Method for elastic-plastic flow in solids, J. Comput. Phys., 167 (2001), pp. 131–176.

[24]
Trangenstein, J. A. and Colella, P., A higher-order Godunov method for modeling finite deformation in elastic-plastics solids, Commun. Pure Appl. Math., 44 (1991), pp. 41–100.

[25]
Wilkins, M. L., Calculation of elastic-plastic flow, Meth. Comput. Phys., 3 (1964), pp. 211–263.

[26]
Tang, H. S. and Sotiropoulos, F., A second-order Godunov method for wave problems in coupled solid-water-gas systems, J. Comput. Phys., 151 (1999), pp. 790–815.

[27]
Fedkiw, R. P., Marquina, A. and Merriman, B., An isobaric fix for the overheating problem in multimaterial compressible flows, J. Comput. Phys., 148 (1999), pp. 545–578.

[28]
Smooler, J., Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, 1983.

[29]
Fedkiw, R. P., Aslam, T., Merriman, B. and Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the Ghost Fluid Method), J. Comput. Phys., 152 (1999), pp. 457–492.

[30]
Guo, Y. H., Li, R. and Yao, C. B., A numerical method on Eulerian grids for two-phase compressible flow, Adv. Appl. Math. Mech., 8 (2016), pp. 187–212.

[31]
Xu, L. and Liu, T. G., Modified ghost fluid method as applied to fluid-plate interaction, Adv. Appl. Math. Mech., 6 (2014), pp. 24–48.