Skip to main content Accessibility help

Identification of High-Variation Fields based on Open Satellite Imagery

  • J. H. Jeppesen (a1), R. H. Jacobsen (a1), R. N. Jørgensen (a1), A. Halberg (a2) and T. S. Toftegaard (a1)...


This paper proposes a simple method for categorizing fields on a regional level, with respect to intra-field variations. It aims to identify fields where the potential benefits of applying precision agricultural practices are highest from an economic and environmental perspective. The categorization is based on vegetation indices derived from Sentinel-2 satellite imagery. A case study on 7678 winter wheat fields is presented, which employs open data and open source software to analyze the satellite imagery. Furthermore, the method can be automated to deliver categorizations at every update of satellite imagery, hence coupling the geospatial data analysis to direct improvements for the farmers, contractors, and consultants.


Corresponding author



Hide All
Barnes, E, Clarke, T, Richards, S, Colaizzi, PD, Haberland, J, Kostrzewski, M, et al. 2000. Coincident Detection of Crop Water Stress, Nitrogen Status and Canopy Density Using Ground-Based Multispectral Data. Proceedings of the Fifth International Conference on Precision Agriculture.
Clevers, JGPW, de Jong, SM, Epema, GF, van der Meer, F, Bakker, WH, Skidmore, AK and Addink, EA 2001. MERIS and the red-edge position. International Journal of Applied Earth Observation and Geoinformation 3 (4), 313320.
Delin, S, Gruvaeus, I, Wetterlind, J, Stenberg, M, Frostgård, G, Börling, K, et al. 2015. Fertilisation for optimised yield can minimise nitrate leaching in grain production. Proceedings of the International Fertiliser Society 774.
Drusch, M, Del Bello, U, Carlier, S, Colin, O, Fernandez, V, Gascon, F, et al. 2012. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment 120, 2536.
Gitelson, AA, Kaufman, YJ and Merzlyak, MN 1996. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment 58 (3), 289298.
Haghighattalab, A, González Pérez, L, Mondal, S, Singh, D, Schinstock, D, Rutkoski, J et al. 2016. Application of unmanned aerial systems for high throughput phenotyping of large wheat breeding nurseries. Plant Methods 12 (1), 35.
Herrmann, I, Pimstein, A, Karnieli, A, Cohen, Y, Alchanatis, V and Bonfil, DJ 2011. LAI assessment of wheat and potato crops by VENμS and Sentinel-2 bands. Remote Sensing of Environment 115 (8), 21412151.
Jeppesen, JH, Jacobsen, RH, Jørgensen, RN and Toftegaard, TS 2016. Towards Data-Driven Precision Agriculture using Open Data and Open Source Software. CIGR-AgEng conference. (retrieved 07/12/16).
Kindred, DR, Milne, AE, Webster, R, Marchant, BP and Sylvester-Bradley, R 2014. Exploring the spatial variation in the fertilizer-nitrogen requirement of wheat within fields. The Journal of Agricultural Science 153 (01), 2541.
Mamo, M, Malzer, GL, Mulla, DJ, Huggins, DR and Strock, J 2003. Spatial and Temporal Variation in Economically Optimum Nitrogen Rate for Corn. Agronomy Journal 95 (4), 958964.
Nilsson, C 2010. Möjligheter att minska kväveutlakningen genom att anpassa kvävegödslingen till variationer inom stråsädesfält. (retrieved 05/12/16).
Raper, TB and Varco, JJ 2015. Canopy-scale wavelength and vegetative index sensitivities to cotton growth parameters and nitrogen status. Precision Agriculture 16, 6276.
Rouse, JW, Hass, RH, Schell, JA and Deering, DW 1973. Monitoring vegetation systems in the great plains with ERTS. Third Earth Resources Technology Satellite (ERTS) Symposium 1, 309317.
Roy, DP, Wulder, MA, Loveland, TR, Woodcock, CE, Allen, RG, Anderson, MC, et al. 2014. Landsat-8: Science and product vision for terrestrial global change research. Remote Sensing of Environment 145, 154172.
Seelan, SK, Laguette, S, Casady, GM and Seielstad, GA 2003. Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment 88 (1-2), 157169.
Skjødt, P, Hansen, PM and Nyholm, RN 2003. Sensor Based Nitrogen Fertilization Increasing Grain Protein Yield in Winter Wheat. (retrieved 01/12/16).
Wulder, MA, Masek, JG, Cohen, WB, Loveland, TR and Woodcock, CE 2012. Opening the archive: How free data has enabled the science and monitoring promise of Landsat. Remote Sensing of Environment 122, 210.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed